世界首次成功测量原子间的结合力

世界首次成功测量原子间的结合力

近日日本北陆先端科学技术大学的先端科学技术研究科应用物理学领域的大岛义文教授等成功测量了原子间的结合力。其研究成果“Peculiar Atomic Bond Nature in Platinum Monatomic Chains”发表在影响因子为11.238的期刊《Nano Letters》上。

***什么是原子间的结合力***

原子之间的作用力,实际上就是电磁力。究竟是怎样的电磁力呢?我们知道原子空间绝大部分是电子的运动空间,原子核位于相对中心的较小区域,原子与原子核电量总体处于平衡状态。是总体处于平衡,这是我们必须清楚的地方。但具体到原子的某一部分空间是不平衡的,比如,原子核附近的空间是正电处于优势,原子外围空间自然是负电处于优势。两个原子之间接触的表面自然属于外围空间,自然都是负电占据优势,原子之间自然是相互排斥的,这当然是原子之间在一定距离范围内的情况。超过一定的距离,原子之间的排斥力就很小了,这样的原子间隔应该就是原子之间的正常距离了。

***计算原子间的结合力为何很复杂***

原子并不是我们想象中的单个个体,而是由原子核和外围的众多电子组成的。它们在量子力学的法则下,通过原子内的作用力,组成了一个复杂的量子系统。

而且,原子内各个成员的小动作太多。比方说,许多原子核有好几种办法自转,每个核外的外层电子可以在几个空轨道之间乱窜。电子或电子的电量并不是均匀分布到原子的外围空间,而是环绕原子核运动。我们知道运动的电子会产生磁场,涡旋运动的电子形成的磁场会呈现为一个小磁针状态的可以分为正极和负极的磁场,也就是我们说的偶极子磁场。

因此,原子间不同的化学反应,原子内部各成分的运动状态都会影响其作用力,无论应用量子力学还是经典计算机都很难通过理论计算来得知它们的作用力大小。

***那我们怎么测量原子间的结合力***

材料的性质由原子间的几何排列及原子间内部键结合形态而决定。原子的排列一般是链状结构,具有一维力学性质,然而对于一维力学性质,原子的微弱移动也很敏感,这大大增加了原子间力的测量难度。如果能够搞清楚原子的几何排列结构和其相关的力学性质,我们就可以根据一维力学的结构原理来分析。那么首先要做的是开发一种具备一维力学原理的电子设备或者传感器来捕捉原子的运动轨迹。在大岛义文教授等的研究中,将一个细长的水晶谐振子放入到一个可以直接观测原子排列的透射式电子显微镜电子枪中,通过显微力学原理测量法来探究原子的排列和其力学关系。这里面为什么要用到透射式电子显微镜呢?

透射电子显微镜(Transmission Electron Microscope,简称TEM),可以看到在光学显微镜下无法看清的小于0.2um的细微结构,这些结构称为亚显微结构或超微结构。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。1932年Ruska发明了以电子束为光源的透射电子显微镜,电子束的波长要比可见光和紫外光短得多,并且电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长越短。目前TEM的分辨力可达0.2nm。

透射式电子显微镜成像采用平行入射电子束照射样品,后续的电磁透镜通过同时聚焦从样品各个像素点发出的不同散射方向透射电子(TE-transmission electron),从而对电子束照射区域进行放大成像,通过调节中间的电磁透镜焦距,可实现放大倍数调节,最后用投影镜将物像照射在图像记录或显示上;SEM/STEM使用汇聚电子束照射样品 ,逐点扫描成像,空间分辨率和汇聚电子束束斑直径相关,通过改变电子束扫描区域大小来改变放大倍数。

在这种方法中,在与白金原子接触后,水晶谐振子的共振周期会由于他们的相互作用而发生变化。共振周期的变化与物质的等价弹性系数相对应,通过观测水晶谐振子的共振周期的这种变化,间接测量纳米级或原子级物质间的作用力。水晶谐振子的振动振幅一般在27皮米(1皮米=10-12米),大约是氧原子半径的1/2。而利用透射式电子显微镜可以很容易看清楚原子的轮廓。

在他们的研究中,显微镜电子枪内部放置150个白金的原子链,在此之前研究白金原子的特性时发现,确定白金原子链间的结合强度为25N/m。这个结合力比白金的块状晶体(Bulk crystal)的原子结合强度20N/m还要大。另外,原子间结合链(0.25nm)的最大伸长长度最大为0.06nm,其弹性变形大约为24%,而块状晶体的弹性变形大约只有5%。

结合第一原理的计算结果,这种特有的原子结合性质,并非是白金原子链的能量上最稳定的构造,而是结构形成的最小必要张力而产生的原子链结合。

***结语***

我们如果能够准确掌握分子或原子间作用力的大小,对于纳米级材料的研究会有很大的帮助,使我们更容易地理解材料的物理和化学性质,进而可以更进一步地研究开发新型材料应用于各个领域。

参考文献

1.    [endif]https://www.shutterstock.com/image-illustration/3d-illustration-structure-graphene-tube-abstract-1410015179

2.    [endif]http://mozi.ustc.edu.cn/index/info/239

3.    [endif]https://microbenotes.com/transmission-electron-microscope-tem/

4.    [endif]https://research-er.jp/articles/view/98927

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343

推荐阅读更多精彩内容