Elasticsearch聚合查询(二)

概念Bucket 可以理解为一个桶,它会遍历文档中的内容,凡是符合某一要求的就放入一个桶中,分桶相当与 SQL 中的 group by

这篇博客讲的桶的关键字有:Terms AggregationFilter AggregationHistogram AggregationRange AggregationDate Aggregation

一、创建索引、数据

1、创建索引

DELETE cars
PUT cars
{
  "mappings": {
      "properties": {
        "price": {
          "type":"long"
        },
        "color": {
          "type":"keyword"
        },
        "brand": {
          "type":"keyword"
        },
        "sellTime": {
          "type":"date"
        }
      }
    }
}

属性字段:价格、颜色、品牌、销售时间

2、添加索引数据

POST /cars/_bulk
{ "index": {}}
{ "price" : 80000, "color" : "red", "brand" : "BMW", "sellTime" : "2014-01-28" }
{ "index": {}}
{ "price" : 85000, "color" : "green", "brand" : "BMW", "sellTime" : "2014-02-05" }
{ "index": {}}
{ "price" : 120000, "color" : "green", "brand" : "Mercedes", "sellTime" : "2014-03-18" }
{ "index": {}}
{ "price" : 105000, "color" : "blue", "brand" : "Mercedes", "sellTime" : "2014-04-02" }
{ "index": {}}
{ "price" : 72000, "color" : "green", "brand" : "Audi", "sellTime" : "2014-05-19" }
{ "index": {}}
{ "price" : 60000, "color" : "red", "brand" : "Audi", "sellTime" : "2014-06-05" }
{ "index": {}}
{ "price" : 40000, "color" : "red", "brand" : "Audi", "sellTime" : "2014-07-01" }
{ "index": {}}
{ "price" : 35000, "color" : "blue", "brand" : "Honda", "sellTime" : "2014-08-12" }

3、查看是否成功

命令

GET /_cat/count/cars?v

可以看到该索引存在,并且有8条文档数据。

二、Terms Aggregation

官方7.3文档Terms Aggregation

概念 : 根据某一项的每个唯一的值的聚合。

1、根据品牌分桶

GET cars/_search?size=0
{
    "aggs" : {
        "genres" : {
            "terms" : { "field" : "brand" } 
        }
    }
}

返回结果

2、分桶后只显示文档数量前3的桶

GET cars/_search?size=0
{
    "aggs" : {
        "cars" : {
            "terms" : {
                "field" : "brand",
                "size" : 3
            }
        }
    }
}

返回

从图中可以看出文档数量前三的桶。

3、分桶后排序

GET cars/_search?size=0
{
    "aggs" : {
        "genres" : {
            "terms" : {
                "field" : "brand",
                "order" : { "_count" : "asc" }
            }
        }
    }
}

4、显示文档数量大于3的桶

GET cars/_search?size=0
{
    "aggs" : {
        "brands" : {
            "terms" : {
                "field" : "brand",
                "min_doc_count": 3
            }
        }
    }
}

5、使用精确指定的词条进行分桶

GET /cars/_search?size=0
{
    "aggs" : {
        "JapaneseCars" : {
             "terms" : {
                 "field" : "brand",
                 "include" : ["BMW", "Audi"]
             }
         }
    }
}

这里也只展示些常用的,更多有关Terms Aggregation那就看官网吧。

三、 Filter Aggregation

官方文档Filter AggregationFilters Aggregation

Filter概念:指具体的域和具体的值,可以说是在 Terms Aggregation 的基础上进行了过滤,只对特定的值进行了聚合。

1、过滤获取品牌为BMW的桶,并求该桶平均值

GET /cars/_search?size=0
{
    "aggs" : {
        "brands" : {
            "filter" : { "term": { "brand": "BMW" } },
            "aggs" : {
                "avg_price" : { "avg" : { "field" : "price" } }
            }
        }
    }
}

返回

2、过滤获取品牌为BMW的或者color为绿色的桶

Filters概念 : Filter Aggreagtion 只能指定一个过滤条件,响应也只是单个桶。如果想要只对多个特定值进行聚合,使用 Filter Aggreagtion 只能进行多次请求。

而使用 Filters Aggreagation 就可以解决上述的问题,它可以指定多个过滤条件,也是说可以对多个特定值进行聚合。

GET /cars/_search?size=0
{
  "size": 0,
  "aggs" : {
    "cars" : {
      "filters" : {
        "filters" : {
          "colorBucket" :   { "match" : { "color" : "red"   }},
          "brandBucket" : { "match" : { "brand" : "Audi" }}
        }
      }
    }
  }
}

返回

四、Histogram Aggreagtion

官方文档Histogram Aggreagtion

概念 Histogram与Terms聚合类似,都是数据分组,区别是Terms是按照Field的值分组,而Histogram可以按照指定的间隔对Field进行分组

1、根据价格区间为10000分桶

GET /cars/_search?size=0
{
    "aggs" : {
        "prices" : {
            "histogram" : {
                "field" : "price",
                "interval" : 10000
            }
        }
    }
}

返回

2、根据价格区间为10000分桶,同时如果桶中没有文档就不显示桶

上面的分桶我们可以发现价格在5000~6000 的文档没有也显示为0,我们想把如果桶中没有文档就不显示该桶

GET /cars/_search?size=0
{
    "aggs" : {
        "prices" : {
            "histogram" : {
                "field" : "price",
                "interval" : 10000,
                 "min_doc_count" : 1
            }
        }
    }
}

返回

五、Range Aggregation

官方文档Range Aggregation

概念: 根据用户传递的范围参数作为桶,进行相应的聚合。在同一个请求中,可以传递多组范围,每组范围作为一个桶。

1、根据价格区间分桶

GET /cars/_search?size=0
{
    "aggs" : {
        "price_ranges" : {
            "range" : {
                "field" : "price",
                "ranges" : [
                    { "to" : 50000 },
                    { "from" : 5000, "to" : 80000 },
                    { "from" : 80000 }
                ]
            }
        }
    }
}

返回

img

我们也可以指定key的名称

GET /cars/_search?size=0
{
    "aggs" : {
        "price_ranges" : {
            "range" : {
                "field" : "price",
                "ranges" : [
                    { "key" : "xiaoyu",  "to" : 50000 },
                    {  "key" : "baohan", "from" : 5000, "to" : 80000 },
                    {  "key" : "dayu", "from" : 80000 }
                ]
            }
        }
    }
}

返回

六、 Date Aggregation

官方文档Date Histogram AggregationDate Range Aggregation

Date Histogram概念 针对于时间格式数据的直方图聚合,基本的特性与 Histogram Aggregation 一致。

1、按月分桶显示每个月的销量

注意 官方文档这里不是interval而是calendar_interval,但是按照这样操作会报错,因为我看的7.3的文档,而我部署的es是7.1版本。说明这个地方7.3有了改进。

POST /cars/_search?size=0
{
    "aggs" : {
        "sales_over_time" : {
            "date_histogram" : {
                "field" : "sellTime",
                "interval" : "1M",
                "format" : "yyyy-MM-dd" 
            }
        }
    }
}

返回

2、根据指定时间区间分桶

Date Range概念 :针对于时间格式数据的范围聚合,基本的特性与 Range Aggreagtion 一致。

POST /cars/_search?size=0
{
    "aggs": {
        "range": {
            "date_range": {
                "field": "sellTime",
                "format": "MM-yyyy",
                "ranges": [
                    { "to": "now-10M/M" }, 
                    { "from": "now-10M/M" } 
                ]
            }
        }
    }
}

上面的意思是10个月前的分为一个桶,10个月前之后的分为一个桶

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,544评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,430评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,764评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,193评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,216评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,182评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,063评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,917评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,329评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,543评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,722评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,425评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,019评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,671评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,825评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,729评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,614评论 2 353

推荐阅读更多精彩内容