利用SAS进行数据清洗技术——缺失值查询

本篇文章介绍如何利用sas进行缺失值的查询工作。

假定我们有数据集aa,包含如下变量(数据省略):

ID dose gender age t0 t1 a1 a2

最简单的方式当然就是挨个变量找缺失值,如下:

data missing;

set aa;

if id=. or dose=. or gender=. or age=. or t0=. or t1=. or a1=. or a2=.;

proc print;

run;

这种方式很好理解,就是利用if语句逐个判断每个变量是否有缺失(注意,如果变量时文本型,不能写=.,而是=" "),但缺点也是显而易见的,如果不是现在的8个变量,而是80个变量,那写一遍估计要累个半死。所以我们用下面的语句节省体力:

data missing(drop=i);

set aa;

array num{8} id dose gender age t0 t1 a1 a2;

do i=1 to 8;

if num{i}=. then output;

end;

这种方式好像比上面的更复杂了,但效率提高了n倍(取决于你的变量有多少)。这种方式是利用数组判断缺失值,不管有100个还是1000个变量,对数组来说没什么区别,只是数组中变量的个数改变一下而已(如本例中的8)。

当这种方式仍不是最节省的,因为我们还是需要把这8个变量一一写出来,那可不可以就不写变量名呢。当然可以,还有更简单的方式如下:

data missing(drop=i);

set aa;

array num{*} _all_;

do i=1 to dim(num);

if num{i}=. then output;

end;

当这种方式更简单了,而且是个通用语句,不管你有10个还是1000个变量,都可以用这种方式来查询,一个字母都不用改。当然前提是所有变量都是数值型,如果是文本型,那就应该是num{i}=" "。

还有另外一种非常简洁 的方式是利用函数,如下:

data missing(drop=i);

set aa;

array num{*} _all_;

do i=1 to dim(num);

if missing(num{i}) then output;

end;

用函数的这种方式有什么好处呢?起码有一点,你不用考虑到底是数值还是文本,全部都是missing(变量)就行了。否则你还得想着数值是.,文本是" "。一不小心忘了容易出问题。

前面所说的都是假定所有变量都是同一种类型的,如果变量中既有数值型,又有文本型,那怎么办呢?如下程序就很简单了:

data missing(drop=i);

set aa;

array a _numeric_;

do i=1 to dim(a);

if missing(a) then output;

end;

array b_character_;

do i=1 to dim(b);

if missing(b) then output;

end;

毫不夸张地说,这个简直就是个缺失值的通用语句,同时遍历了数据集中的数值型和文本型的所有缺失值。所有的缺失值查找,几乎都可以这一语句来实现,它几乎包含了所有的可能情况,还能苛求什么呢?套用就行了。

来源 | 经管之家论坛

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,313评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,369评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,916评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,333评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,425评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,481评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,491评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,268评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,719评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,004评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,179评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,832评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,510评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,153评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,402评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,045评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,071评论 2 352

推荐阅读更多精彩内容

  • 背景 一年多以前我在知乎上答了有关LeetCode的问题, 分享了一些自己做题目的经验。 张土汪:刷leetcod...
    土汪阅读 12,743评论 0 33
  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 134,644评论 18 139
  • 个人学习批处理的初衷来源于实际工作;在某个迭代版本有个BS(安卓手游模拟器)大需求,从而在测试过程中就重复涉及到...
    Luckykailiu阅读 4,712评论 0 11
  • 不成文,随便说说。 宝宝满两个月了,做了两个月的妈妈了,宝宝睡觉抱着宝宝看她昨天前天的照片视频,自己就傻傻笑了。 ...
    了了麻麻阅读 190评论 2 0
  • 低头收好面具,一边吩咐下去。 “侍从,我现在这个样子在这深山里尚可,却不好见人,准备着点黑灰什么的,明天涂在脸上。...
    悦己_蕾蕾阅读 227评论 0 1