2018-07-16

[1807.04800] Feature Selection for Gender Classification in TUIK Life Satisfaction Survey
https://arxiv.org/abs/1807.04800
As known, attribute selection is a method that is used before the classification of data mining. In this study, a new data set has been created by using attributes expressing overall satisfaction in Turkey Statistical Institute (TSI) Life Satisfaction Survey dataset. Attributes are sorted by Ranking search method using attribute selection algorithms in a data mining application. These selected attributes were subjected to a classification test with Naive Bayes and Random Forest from machine learning algorithms. The feature selection algorithms are compared according to the number of attributes selected and the classification accuracy rates achievable with them. In this study, which is aimed at reducing the dataset volume, the best classification result comes up with 3 attributes selected by the Chi2 algorithm. The best classification rate was 73% with the Random Forest classification algorithm.

[1807.04798] Hydranet: Data Augmentation for Regression Neural Networks
https://arxiv.org/abs/1807.04798
Despite recent efforts, deep learning techniques remain often heavily dependent on a large quantity of labeled data. This problem is even more challenging in medical image analysis where the annotator expertise is often scarce. In this paper we propose a novel data-augmentation method to regularize neural network regressors, learning from a single global label per image. The principle of the method is to create new samples by recombining existing ones. We demonstrate the performance of our algorithm on two tasks: the regression of number of enlarged perivascular spaces in the basal ganglia; and the regression of white matter hyperintensities volume. We show that the proposed method improves the performance even when more basic data augmentation is used. Furthermore we reached an intraclass correlation coefficient between ground truth and network predictions of 0.73 on the first task and 0.86 on the second task, only using between 25 and 30 scans with a single global label per scan for training. To achieve a similar correlation on the first task, state-of-the-art methods needed more than 1000 training scans.

[1807.05076] Metalearning with Hebbian Fast Weights
https://arxiv.org/abs/1807.05076
We unify recent neural approaches to one-shot learning with older ideas of associative memory in a model for metalearning. Our model learns jointly to represent data and to bind class labels to representations in a single shot. It builds representations via slow weights, learned across tasks through SGD, while fast weights constructed by a Hebbian learning rule implement one-shot binding for each new task. On the Omniglot, Mini-ImageNet, and Penn Treebank one-shot learning benchmarks, our model achieves state-of-the-art results.

[1807.05118] Tune: A Research Platform for Distributed Model Selection and Training
https://arxiv.org/abs/1807.05118
Modern machine learning algorithms are increasingly computationally demanding, requiring specialized hardware and distributed computation to achieve high performance in a reasonable time frame. Many hyperparameter search algorithms have been proposed for improving the efficiency of model selection, however their adaptation to the distributed compute environment is often ad-hoc. We propose Tune, a unified framework for model selection and training that provides a narrow-waist interface between training scripts and search algorithms. We show that this interface meets the requirements for a broad range of hyperparameter search algorithms, allows straightforward scaling of search to large clusters, and simplifies algorithm implementation. We demonstrate the implementation of several state-of-the-art hyperparameter search algorithms in Tune. Tune is available at this http URL

[1807.05027] Are generative deep models for novelty detection truly better?
https://arxiv.org/abs/1807.05027
Many deep models have been recently proposed for anomaly detection. This paper presents comparison of selected generative deep models and classical anomaly detection methods on an extensive number of non--image benchmark datasets. We provide statistical comparison of the selected models, in many configurations, architectures and hyperparamaters. We arrive to conclusion that performance of the generative models is determined by the process of selection of their hyperparameters. Specifically, performance of the deep generative models deteriorates with decreasing amount of anomalous samples used in hyperparameter selection. In practical scenarios of anomaly detection, none of the deep generative models systematically outperforms the kNN.

[1807.04950] Deep Learning in the Wild
https://arxiv.org/abs/1807.04950
Deep learning with neural networks is applied by an increasing number of people outside of classic research environments, due to the vast success of the methodology on a wide range of machine perception tasks. While this interest is fueled by beautiful success stories, practical work in deep learning on novel tasks without existing baselines remains challenging. This paper explores the specific challenges arising in the realm of real world tasks, based on case studies from research & development in conjunction with industry, and extracts lessons learned from them. It thus fills a gap between the publication of latest algorithmic and methodical developments, and the usually omitted nitty-gritty of how to make them work. Specifically, we give insight into deep learning projects on face matching, print media monitoring, industrial quality control, music scanning, strategy game playing, and automated machine learning, thereby providing best practices for deep learning in practice.

[1805.02556] Skeleton-Based Relational Modeling for Action Recognition
https://arxiv.org/abs/1805.02556
With the fast development of effective and low-cost human skeleton capture systems, skeleton-based action recognition has attracted much attention recently. Most existing methods use Convolutional Neural Network(CNN) and Recurrent Neural Network(RNN) to extract spatio-temporal information embedded in the skeleton sequences for action recognition. However, these approaches are limited in the ability of relational modeling in a single skeleton, due to the loss of important structural information when converting the raw skeleton data to adapt to the CNN or RNN input. In this paper, we propose an Attentional Recurrent Relational Network-LSTM(ARRN-LSTM) to simultaneously model spatial configurations and temporal dynamics in skeletons for action recognition. The spatial patterns embedded in a single skeleton are learned by a Recurrent Relational Network, followed by a multi-layer LSTM to extract temporal features in the skeleton sequences. To exploit the complementarity between different geometries in the skeleton for sufficient relational modeling, we design a two-stream architecture to learn the relationship among joints and explore the underlying patterns among lines simultaneously. We also introduce an adaptive attentional module for focusing on potential discriminative parts of the skeleton towards a certain action. Extensive experiments are performed on several popular action recognition datasets and the results show that the proposed approach achieves competitive results with the state-of-the-art methods.

【UMAP降维:均匀流形逼近与投影】《UMAP Uniform Manifold Approximation and Projection for Dimension Reduction | SciPy 2018 - YouTube》 O网页链接 ​​​​

《Regularizing Autoencoder-Based Matrix Completion Models via Manifold Learning》D M Nguyen, E Tsiligianni, R Calderbank, N Deligiannis [Vrije Universiteit Brussel & Duke University] (2018) O网页链接 view:O网页链接 ​​​​

《A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks》K Lee, K Lee, H Lee, J Shin [Korea Advanced Institute of Science and Technology (KAIST) & University of Michigan] (2018) O网页链接 view:O网页链接 ​​​​

《Variance Reduction for Reinforcement Learning in Input-Driven Environments》H Mao, S B Venkatakrishnan, M Schwarzkopf, M Alizadeh [MIT] (2018) O网页链接 view:O网页链接 ​​​​

《Anytime Neural Prediction via Slicing Networks Vertically》H Lee, J Shin [Korea Advanced Institute of Science and Technology] (2018) O网页链接 view:O网页链接 ​​​​

《A Single Shot Text Detector with Scale-adaptive Anchors》Q Yuan, B Zhang, H Li, Z Wang, Z Luo (2018) O网页链接 view:O网页链接 ​​​​

《Contextual Bandits under Delayed Feedback》C Vernade, A Carpentier, G Zappella, B Ermis, M Brueckner [Amazon & Otto-Von-Guericke Universität] (2018) O网页链接 view:O网页链接 ​​​​

《A Fully Convolutional Two-Stream Fusion Network for Interactive Image Segmentation》Y Hu, A Soltoggio, R Lock, S Carter [Loughborough University & The ICE Agency] (2018) O网页链接 view:O网页链接 ​​​​

《Deep Learning for Imbalance Data Classification using Class Expert Generative Adversarial Network》Fanny, T W Cenggoro [Bina Nusantara University] (2018) O网页链接 view:O网页链接 ​​​​

《Scalable Recommender Systems through Recursive Evidence Chains》E Tragas, C Luo, M Gazeau, K Luk, D Duvenaud [Snapchat & University of Toronto & Borealis AI] (2018) O网页链接 view:O网页链接 ​​​​

《Learning Theory and Algorithms for Revenue Management in Sponsored Search》L Wang, H Liu, G Chen, S Ren, X Meng, Y Hu [Alibaba Group] (2018) O网页链接 view:O网页链接 ​​​​

《3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data》M Weiler, M Geiger, M Welling, W Boomsma, T Cohen [University of Amsterdam & EPFL] (2018) O网页链接 view:O网页链接 GitHub:O网页链接 ​​​​

《Near Optimal Exploration-Exploitation in Non-Communicating Markov Decision Processes》R Fruit, M Pirotta, A Lazaric [Inria Lille & Facebook AI Research] (2018) O网页链接 view:O网页链接 ​​​​

《Automatic deep learning-based normalization of breast dynamic contrast-enhanced magnetic resonance images》J Zhang, A Saha, B J. Soher, M A. Mazurowski [Duke University] (2018) O网页链接 view:O网页链接 GitHub:O网页链接 ​​​​

《Automated Vulnerability Detection in Source Code Using Deep Representation Learning》R L. Russell, L Kim, L H. Hamilton, T Lazovich, J A. Harer, O Ozdemir, P M. Ellingwood, M W. McConley [Draper] (2018) O网页链接 view:O网页链接 ​​​​

《Subpixel-Precise Tracking of Rigid Objects in Real-time》T Böttger, M Ulrich, C Steger [MVTec Software] (2018) O网页链接 view:O网页链接 ​​​​

【SciPy 2018视频专辑】《SciPy 2018: Scientific Computing with Python Conference - YouTube》 O网页链接 ​​​​

【将语言、视觉与行为联系起来】《Connecting Language and Vision to Actions(ACL 2018 Tutorial)》 O网页链接 ​​​​

《Regularizing Autoencoder-Based Matrix Completion Models via Manifold Learning》D M Nguyen, E Tsiligianni, R Calderbank, N Deligiannis [Vrije Universiteit Brussel & Duke University] (2018) O网页链接 view:O网页链接 ​​​​

《MAT-CNN-SOPC: Motionless Analysis of Traffic Using Convolutional Neural Networks on System-On-a-Programmable-Chip》S Dey, G Kalliatakis, S Saha, A K Singh, S Ehsan, K McDonald-Maier [University of Essex] (2018) O网页链接 view:O网页链接 ​​​​

《MAT-CNN-SOPC: Motionless Analysis of Traffic Using Convolutional Neural Networks on System-On-a-Programmable-Chip》S Dey, G Kalliatakis, S Saha, A K Singh, S Ehsan, K McDonald-Maier [University of Essex] (2018) O网页链接 view:O网页链接 ​​​​

————————————————————
图神经网络+池化模块,斯坦福等提出层级图表征学习 | 机器之心
https://www.jiqizhixin.com/articles/2018-07-16-3
————————————————————
获7000万元融资之后,一知智能要把自然语言处理技术吃透 | 机器之心
https://www.jiqizhixin.com/articles/2018-07-16-5

获7000万元融资之后,一知智能要把自然语言处理技术吃透
日前,杭州一知智能科技有限公司宣布在 2018 年 7 月完成 A 轮融资,融资金额 7000 万元人民币。本轮融资由启赋资本领投、金沙江联合资本等机构跟投。资金主要用于进一步加强人工智能 NLP 人才引进和核心技术科研投入,并推出基于 NLP 技术的智能外呼机器人。

赵洲-浙江大学个人主页
http://person.zju.edu.cn/zhaozhou/686052.html
zjuzhaozhou (Zhao Zhou)
https://github.com/zjuzhaozhou

赵洲副教授 — 浙江大学DCD实验室
http://www.dcd.zju.edu.cn/62105458/8d756d32526f65596388

2018机器阅读理解技术竞赛,奇点机智获第一名 - CSDN博客
https://blog.csdn.net/dqcfkyqdxym3f8rb0/article/details/80440773

科大讯飞认知智能持续突破,机器阅读理解SQuAD测试勇夺第一!
http://www.iflytek.com/content/details_135_2411.html

获7000万元融资之后,一知智能要把自然语言处理技术吃透 | 机器之心
https://www.jiqizhixin.com/articles/2018-07-16-5

富士康郭台铭现身斯坦福大学,谈工业人工智能,创立人工智能子公司 | 机器之心
https://www.jiqizhixin.com/articles/2018-07-16-4

face-api.js:一个在浏览器中进行人脸识别的 JavaScript 接口 | 机器之心
https://www.jiqizhixin.com/articles/2018-07-16-2

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,884评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,347评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,435评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,509评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,611评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,837评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,987评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,730评论 0 267
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,194评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,525评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,664评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,334评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,944评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,764评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,997评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,389评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,554评论 2 349

推荐阅读更多精彩内容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi阅读 7,312评论 0 10
  • 文/五月亭 一直觉得把人生分成阶段性的那个里程碑的点很重要。就如李笑来所说的:七年就是一辈子。而根据科学家的说法,...
    旅行心情记阅读 700评论 1 1
  • 你认为在朋友和亲人之间担当信使的即时通信软件有可能转变成一个提供商品和服务的便利性平台吗?在硅谷,关于即时通信软件...
    f11015f29d83阅读 458评论 0 1
  • 要疯,今天忽然开微信看看的,看不到朋友圈了,应该是把我删了或者拉黑了。尼玛你是有多恨我啊? 这么多天做的心理建设忽...
    裳璎珞阅读 227评论 0 1
  • 人的一生中遇到困难和失败是常事,有的人可以扛下来,有的人却受不了!能够扛下来的人不是有什么神力,而是心中有着坚定的...
    臻趣雅集阅读 266评论 0 1