TensorFlow — 相关 API

环境:Ubuntu 14.04.1 LTS (GNU/Linux 3.13.0-105-generic x86_64)

1 TensorFlow 相关函数理解

1.1 tf.truncated_normal

truncated_normal(

shape,

mean=0.0,

stddev=1.0,

dtype=tf.float32,

seed=None,

name=None

)

功能说明:

产生截断正态分布随机数,取值范围为[mean - 2 * stddev, mean + 2 * stddev]。

参数列表

示例代码:

现在在 /home/ubuntu 目录下创建源文件 truncated_normal.py

truncated_normal.py

#!/usr/bin/python

import tensorflow as tf

initial = tf.truncated_normal(shape=[3,3], mean=0, stddev=1)

print tf.Session().run(initial)

然后执行:

python /home/ubuntu/truncated_normal.py

执行结果:

[[-0.18410809-1.285927770.58813173]

[-1.58745313 -0.48672566 -0.27244243]

[-1.458331470.513067361.20532846]]

将得到一个取值范围 [-2, 2] 的 3 * 3 矩阵,可以尝试修改源代码看看输出结果有什么变化。

1.2 tf.constant

constant(

value,

dtype=None,

shape=None,

name='Const',

verify_shape=False

)

功能说明:

根据 value 的值生成一个 shape 维度的常量张量

参数列表

示例代码:

现在在 /home/ubuntu 目录下创建源文件 constant.py,内容可参考:

constant.py

#!/usr/bin/python

import tensorflow as tf

import numpy as np

a = tf.constant([1,2,3,4,5,6],shape=[2,3])

b = tf.constant(-1,shape=[3,2])

c = tf.matmul(a,b)

e = tf.constant(np.arange(1,13,dtype=np.int32),shape=[2,2,3])

f = tf.constant(np.arange(13,25,dtype=np.int32),shape=[2,3,2])

g = tf.matmul(e,f)

with tf.Session() as sess:

    print sess.run(a)

    print("##################################")

    print sess.run(b)

    print("##################################")

    print sess.run(c)

    print("##################################")

    print sess.run(e)

    print("##################################")

    print sess.run(f)

    print("##################################")

    print sess.run(g)

然后执行:

python /home/ubuntu/constant.py

执行结果:

[[1 2 3]

[4 5 6]]

##################################

[[-1 -1]

[-1 -1]

[-1 -1]]

##################################

[[-6 -6]

[-15 -15]]

##################################

[[[1 2 3]

[ 4 5 6]]

[[ 7 8 9]

[10 11 12]]]

##################################

[[[13 14]

[15 16]

[17 18]]

[[19 20]

[21 22]

[23 24]]]

##################################

[[[94 100]

[229 244]]

[[508 532]

[697 730]]]

a: 2x3 维张量;

b: 3x2 维张量;

c: 2x2 维张量;

e: 2x2x3 维张量;

f: 2x3x2 维张量;

g: 2x2x2 维张量。

可以尝试修改源代码看看输出结果有什么变化。

1.3 tf.placeholder

placeholder(

dtype,

shape=None,

name=None

)

功能说明:

是一种占位符,在执行时候需要为其提供数据

参数列表

示例代码:

现在在 /home/ubuntu 目录下创建源文件 placeholder.py,内容可参考:

placeholder.py

#!/usr/bin/python

import tensorflow as tf

import numpy as np

x = tf.placeholder(tf.float32,[None,10])

y = tf.matmul(x,x)

with tf.Session() as sess:

    rand_array = np.random.rand(10,10)

    print sess.run(y,feed_dict={x:rand_array})

然后执行:

python /home/ubuntu/placeholder.py

执行结果:

[[1.81712103  2.02877522  1.68924046 2.40462661  1.90574181  2.21769357

1.66864204  1.87491691  2.32046914  2.07164645]

[ 3.18995905  2.80489087  2.53446984  2.93795609  2.35939479  2.61397004

1.47369146  1.69601274  2.96881104  2.80005288]

[ 3.40027285  3.17128634  2.83247375  3.58863354  2.67104673  2.81708789

2.04706836  2.4437325  3.10964417  3.03987789]

[ 2.04807019  2.11296868  1.85848451  2.26381588  2.00105739  2.1591928

1.59371364  1.69079185  2.35918951  2.3390758 ]

[ 3.14326477  3.03518987  2.70114732  3.35116243  2.97751141  3.10402942

2.12285256  2.45907426  3.64020634  3.09404778]

[ 2.46236205  2.59506202  2.11775351  2.43848658  2.24290538  2.07725525

1.73363113  1.79471815  2.22352362  2.47508812]

[ 2.3489728  3.25824308  2.53069353  3.52486014  3.3552053  3.18628955

2.6079123  2.44158649  3.47814059  3.41102791]

[ 2.39285374  2.33928251  2.19442534  2.28283715  1.99198937  1.68016291

1.41813767  2.16835332  1.86814547  1.73498607]

[ 2.71498179  2.88635182  2.35225129  3.11072111  2.72122979  2.57475829

2.12802029  2.54610658  2.97226429  2.80705166]

[ 2.99051809  3.2901628  2.51092815  3.67744827  2.57051396  2.53983688

2.18044734  2.18324852  2.58032012  3.19048524]]

输出一个 10x10 维的张量。也可以尝试修改源代码看看输出结果有什么变化。

1.4 tf.nn.bias_add

bias_add(

value,

bias,

data_format=None,

name=None

)

功能说明:

将偏差项 bias 加到 value 上面,可以看做是 tf.add 的一个特例,其中 bias 必须是一维的,并且维度和 value的最后一维相同,数据类型必须和 value 相同。

参数列表

示例代码:

现在在 /home/ubuntu 目录下创建源文件 bias_add.py,内容可参考:

bias_add.py

#!/usr/bin/python

import tensorflow as tf

import numpy as np

a = tf.constant([[1.0, 2.0],[1.0, 2.0],[1.0, 2.0]])

b = tf.constant([2.0,1.0])

c = tf.constant([1.0])

sess = tf.Session()

print sess.run(tf.nn.bias_add(a, b))

#print sess.run(tf.nn.bias_add(a,c)) error

print("##################################")

print sess.run(tf.add(a, b))

print("##################################")

print sess.run(tf.add(a, c))

然后执行:

python /home/ubuntu/bias_add.py

执行结果:

[[3.3.]

[ 3.3.]

[ 3.3.]]

##################################

[[3.3.]

[ 3.3.]

[ 3.3.]]

##################################

[[2.3.]

[ 2.3.]

[ 2.3.]]

3 个 3x2 维张量。也可以尝试修改源代码看看输出结果有什么变化。

1.5 tf.reduce_mean

reduce_mean(

input_tensor,

axis=None,

keep_dims=False,

name=None,

reduction_indices=None

)

功能说明:

计算张量 input_tensor 平均值

参数列表

示例代码:

现在在 /home/ubuntu 目录下创建源文件 reduce_mean.py,内容可参考:

reduce_mean.py

#!/usr/bin/python

import tensorflow as tf

import numpy as np

initial = [[1.,1.],[2.,2.]]

x = tf.Variable(initial,dtype=tf.float32)

init_op = tf.global_variables_initializer()

with tf.Session() as sess:

    sess.run(init_op)

    print sess.run(tf.reduce_mean(x))

    print sess.run(tf.reduce_mean(x,0)) #Column

    print sess.run(tf.reduce_mean(x,1)) #row

然后执行:

python /home/ubuntu/reduce_mean.py

执行结果:

1.5

[ 1.51.5]

[ 1.2.]

也可以尝试修改源代码看看输出结果有什么变化。

1.6 tf.squared_difference

squared_difference(

x,

y,

name=None

)

功能说明:

计算张量 x、y 对应元素差平方

参数列表

示例代码:

现在在 /home/ubuntu 目录下创建源文件 squared_difference.py,内容可参考:

squared_difference.py

#!/usr/bin/python

import tensorflow as tf

import numpy as np

initial_x = [[1.,1.],[2.,2.]]

x = tf.Variable(initial_x,dtype=tf.float32)

initial_y = [[3.,3.],[4.,4.]]

y = tf.Variable(initial_y,dtype=tf.float32)

diff = tf.squared_difference(x,y)

init_op = tf.global_variables_initializer()

with tf.Session() as sess:

    sess.run(init_op)

    print sess.run(diff)

然后执行:

python /home/ubuntu/squared_difference.py

执行结果:

[[ 4.4.]

[ 4.4.]]

也可以尝试修改源代码看看输出结果有什么变化。

1.7 tf.square

square(

x,

name=None

)

功能说明:

计算张量对应元素平方

参数列表

示例代码:

现在在 /home/ubuntu 目录下创建源文件 square.py,内容可参考:

square.py

#!/usr/bin/python

import tensorflow as tf

import numpy as np

initial_x = [[1.,1.],[2.,2.]]

x = tf.Variable(initial_x,dtype=tf.float32)

initial_y = [[3.,3.],[4.,4.]]

y = tf.Variable(initial_y,dtype=tf.float32)

diff = tf.squared_difference(x,y)

init_op = tf.global_variables_initializer()

with tf.Session() as sess:

    sess.run(init_op)

    print sess.run(diff)

然后执行:

python /home/ubuntu/square.py

执行结果:

[[ 1.1.]

[ 4.4.]]

也可以尝试修改源代码看看输出结果有什么变化。

2 TensorFlow 相关类理解

2.1 tf.Variable

__init__(

initial_value=None,

trainable=True,

collections=None,

validate_shape=True,

caching_device=None,

name=None,

variable_def=None,

dtype=None,

expected_shape=None,

import_scope=None

)

功能说明:

维护图在执行过程中的状态信息,例如神经网络权重值的变化。

参数列表

示例代码:

现在在 /home/ubuntu 目录下创建源文件 Variable.py,内容可参考:

Variable.py

#!/usr/bin/python

import tensorflow as tf

initial = tf.truncated_normal(shape=[10,10],mean=0,stddev=1)

W = tf.Variable(initial)

list = [[1.,1.],[2.,2.]]

X = tf.Variable(list,dtype=tf.float32)

init_op = tf.global_variables_initializer()

with tf.Session() as sess:

    sess.run(init_op)

    print("##################(1)################")

    print sess.run(W)

    print("##################(2)################")

    print sess.run(W[:2,:2])

    op = W[:2,:2].assign(22.*tf.ones((2,2)))

    print("###################(3)###############")

    print sess.run(op)

    print("###################(4)###############")

    print (W.eval(sess)) #computes and returnsthe value of this variable

    print("####################(5)##############")

    print (W.eval())#Usage with the default session

    print("#####################(6)#############")

    print W.dtype

    print sess.run(W.initial_value)

    print sess.run(W.op)

    print W.shape

    print("###################(7)###############")

    print sess.run(X)

然后执行:

python /home/ubuntu/Variable.py

执行结果:

##################(1)################

[[ 0.56087822  0.32767066  1.24723649 -0.38045949 -1.58120871  0.61508512  -0.50005329  0.557872    0.24264131  1.15695083]

[ 0.8403486  0.14245604 -1.13870573  0.2471588  0.48664871  0.89047027  1.03071976  1.1539737  -0.64689875 -0.87872595]

[-0.09499338  0.40910682  1.70955396 -1.12553477  0.58261496  0.27552807  0.9310683  -0.80871385 -0.10735693 -1.08375466]

[-0.62496728 -0.26538777  0.07361894 -0.44500601  0.58208632 -1.08835173  -1.80241001 -1.10108757 -0.00228581  1.81949258]

[-1.56699359  1.59961379  1.14145374 -0.41384494 -1.24469018 -1.04554486  0.30459064 -1.59272766 -0.20161593  0.02574082]

[-0.00295581  0.4494803  -0.09411573  0.85826468  0.01789743 -0.33853438  0.21242785 -0.00592159  0.20592701 -0.61374348]

[ 1.73881531 -0.38042647  0.460399  -1.6453017  -0.58561307 -0.7130214  0.32697856 -0.84689331 -1.15418518  1.21276581]

[-1.15040958  0.88829482  0.73727763  0.63111001  0.90698457 -0.33168671  0.21835616 -0.26278856  0.63736057 -0.4095172 ]

[-1.20656824 -0.6755206  -0.21640387 -0.03773152 -0.1836649  -1.38785648  -0.48950577  0.81531078  0.1250588  -0.15474565]

[-0.46234027 -0.32404706 -0.3527672  0.70526761  0.2378609  -0.56674719  0.47251439  1.03810799  0.34087342  0.21140042]]

##################(2)################

[[ 0.56087822  0.32767066] [ 0.8403486  0.14245604]]

###################(3)###############

[[  2.20000000e+01  2.20000000e+01  1.24723649e+00  -3.80459487e-01  -1.58120871e+00  6.15085125e-01  -5.00053287e-01  5.57871997e-01    2.42641315e-01  1.15695083e+00]

[  2.20000000e+01  2.20000000e+01  -1.13870573e+00  2.47158796e-01    4.86648709e-01  8.90470266e-01  1.03071976e+00  1.15397370e+00  -6.46898746e-01  -8.78725946e-01]

[ -9.49933752e-02  4.09106821e-01  1.70955396e+00  -1.12553477e+00    5.82614958e-01  2.75528073e-01  9.31068301e-01  -8.08713853e-01  -1.07356928e-01  -1.08375466e+00]

[ -6.24967277e-01  -2.65387774e-01  7.36189410e-02  -4.45006013e-01    5.82086325e-01  -1.08835173e+00  -1.80241001e+00  -1.10108757e+00  -2.28581345e-03  1.81949258e+00]

[ -1.56699359e+00  1.59961379e+00  1.14145374e+00  -4.13844943e-01  -1.24469018e+00  -1.04554486e+00  3.04590642e-01  -1.59272766e+00  -2.01615930e-01  2.57408191e-02]

[ -2.95581389e-03  4.49480295e-01  -9.41157266e-02  8.58264685e-01    1.78974271e-02  -3.38534385e-01  2.12427855e-01  -5.92159014e-03    2.05927014e-01  -6.13743484e-01]

[  1.73881531e+00  -3.80426466e-01  4.60399002e-01  -1.64530170e+00  -5.85613072e-01  -7.13021398e-01  3.26978564e-01  -8.46893311e-01  -1.15418518e+00  1.21276581e+00]

[ -1.15040958e+00  8.88294816e-01  7.37277627e-01  6.31110013e-01    9.06984568e-01  -3.31686705e-01  2.18356162e-01  -2.62788564e-01    6.37360573e-01  -4.09517199e-01]

[ -1.20656824e+00  -6.75520599e-01  -2.16403872e-01  -3.77315208e-02  -1.83664903e-01  -1.38785648e+00  -4.89505768e-01  8.15310776e-01    1.25058800e-01  -1.54745653e-01]

[ -4.62340266e-01  -3.24047059e-01  -3.52767199e-01  7.05267608e-01    2.37860903e-01  -5.66747189e-01  4.72514391e-01  1.03810799e+00    3.40873420e-01  2.11400419e-01]]

###################(4)###############

[[  2.20000000e+01  2.20000000e+01  1.24723649e+00  -3.80459487e-01  -1.58120871e+00  6.15085125e-01  -5.00053287e-01  5.57871997e-01    2.42641315e-01  1.15695083e+00]

[  2.20000000e+01  2.20000000e+01  -1.13870573e+00  2.47158796e-01    4.86648709e-01  8.90470266e-01  1.03071976e+00  1.15397370e+00  -6.46898746e-01  -8.78725946e-01]

[ -9.49933752e-02  4.09106821e-01  1.70955396e+00  -1.12553477e+00    5.82614958e-01  2.75528073e-01  9.31068301e-01  -8.08713853e-01  -1.07356928e-01  -1.08375466e+00]

[ -6.24967277e-01  -2.65387774e-01  7.36189410e-02  -4.45006013e-01    5.82086325e-01  -1.08835173e+00  -1.80241001e+00  -1.10108757e+00  -2.28581345e-03  1.81949258e+00]

[ -1.56699359e+00  1.59961379e+00  1.14145374e+00  -4.13844943e-01  -1.24469018e+00  -1.04554486e+00  3.04590642e-01  -1.59272766e+00  -2.01615930e-01  2.57408191e-02]

[ -2.95581389e-03  4.49480295e-01  -9.41157266e-02  8.58264685e-01    1.78974271e-02  -3.38534385e-01  2.12427855e-01  -5.92159014e-03    2.05927014e-01  -6.13743484e-01]

[  1.73881531e+00  -3.80426466e-01  4.60399002e-01  -1.64530170e+00  -5.85613072e-01  -7.13021398e-01  3.26978564e-01  -8.46893311e-01  -1.15418518e+00  1.21276581e+00]

[ -1.15040958e+00  8.88294816e-01  7.37277627e-01  6.31110013e-01    9.06984568e-01  -3.31686705e-01  2.18356162e-01  -2.62788564e-01    6.37360573e-01  -4.09517199e-01]

[ -1.20656824e+00  -6.75520599e-01  -2.16403872e-01  -3.77315208e-02  -1.83664903e-01  -1.38785648e+00  -4.89505768e-01  8.15310776e-01    1.25058800e-01  -1.54745653e-01]

[ -4.62340266e-01  -3.24047059e-01  -3.52767199e-01  7.05267608e-01    2.37860903e-01  -5.66747189e-01  4.72514391e-01  1.03810799e+00    3.40873420e-01  2.11400419e-01]]

####################(5)##############

[[  2.20000000e+01  2.20000000e+01  1.24723649e+00  -3.80459487e-01  -1.58120871e+00  6.15085125e-01  -5.00053287e-01  5.57871997e-01    2.42641315e-01  1.15695083e+00]

[  2.20000000e+01  2.20000000e+01  -1.13870573e+00  2.47158796e-01    4.86648709e-01  8.90470266e-01  1.03071976e+00  1.15397370e+00  -6.46898746e-01  -8.78725946e-01]

[ -9.49933752e-02  4.09106821e-01  1.70955396e+00  -1.12553477e+00    5.82614958e-01  2.75528073e-01  9.31068301e-01  -8.08713853e-01  -1.07356928e-01  -1.08375466e+00]

[ -6.24967277e-01  -2.65387774e-01  7.36189410e-02  -4.45006013e-01    5.82086325e-01  -1.08835173e+00  -1.80241001e+00  -1.10108757e+00  -2.28581345e-03  1.81949258e+00]

[ -1.56699359e+00  1.59961379e+00  1.14145374e+00  -4.13844943e-01  -1.24469018e+00  -1.04554486e+00  3.04590642e-01  -1.59272766e+00  -2.01615930e-01  2.57408191e-02]

[ -2.95581389e-03  4.49480295e-01  -9.41157266e-02  8.58264685e-01    1.78974271e-02  -3.38534385e-01  2.12427855e-01  -5.92159014e-03    2.05927014e-01  -6.13743484e-01]

[  1.73881531e+00  -3.80426466e-01  4.60399002e-01  -1.64530170e+00  -5.85613072e-01  -7.13021398e-01  3.26978564e-01  -8.46893311e-01  -1.15418518e+00  1.21276581e+00]

[ -1.15040958e+00  8.88294816e-01  7.37277627e-01  6.31110013e-01    9.06984568e-01  -3.31686705e-01  2.18356162e-01  -2.62788564e-01    6.37360573e-01  -4.09517199e-01]

[ -1.20656824e+00  -6.75520599e-01  -2.16403872e-01  -3.77315208e-02  -1.83664903e-01  -1.38785648e+00  -4.89505768e-01  8.15310776e-01    1.25058800e-01  -1.54745653e-01]

[ -4.62340266e-01  -3.24047059e-01  -3.52767199e-01  7.05267608e-01    2.37860903e-01  -5.66747189e-01  4.72514391e-01  1.03810799e+00    3.40873420e-01  2.11400419e-01]]

#####################(6)#############

<dtype: 'float32_ref'>

[[ 1.81914055 -0.4915559  -0.15831701 -0.88427407 -1.07733405 -0.60749137  1.66635537 -1.72299039 -1.61444342  0.27295882]

[ 0.446365    0.5297941  0.9737168  -0.50106817 -1.59801197  1.08469987  -0.10664631  0.08602872 -1.16334164 -0.31328002]

[ 1.02102256  0.84310216 -1.63820982 -0.37840167  1.2725147  -1.46472263  0.81902218  0.70780081  0.32180747 -0.22242352]

[-0.76061416  0.06686125  1.22337008 -0.76162207  0.26712251 -0.184366  -0.18723577 -1.27243066  1.1201812  0.74929941]

[ 1.55394351  0.95762426 -0.77478319 -0.62725532  0.99874109  0.11631405  0.55721915 -1.99805415 -1.81725216 -0.33845708]

[ 0.38020468 -0.22800203  1.18337238 -0.05378164  0.50396085 -1.87139273  -0.09195592 -1.9437803  0.19355652  0.75287497]

[ 0.87766737 -0.58997762  1.7898128  1.15790749  1.89991117 -0.86276245  -0.55173373  0.52809429  1.03385186 -0.17748916]

[ 0.85077554  0.69927084 -0.70190752 -0.09315278 -0.05869755  0.61413532  -0.18304662  1.41501033  0.49717629  1.04668236]

[-0.03881529 -0.64575118 -0.99053252 -0.99590522  0.13150445  1.85600221  -0.12806618 -0.80717343 -1.21601212 -0.819583  ]

[-0.17798649  0.38206637  0.92168695  1.59679687 -0.70975852 -1.37671721  1.63708949 -0.1433745  -1.37151611  0.24576309]]

None

(10, 10)

###################(7)###############

[[ 1.  1.]

[ 2.  2.]]

3 完成

到此,我们大致了解了TensorFlow相关API的含义和用法。

以上。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,816评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,729评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,300评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,780评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,890评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,084评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,151评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,912评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,355评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,666评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,809评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,504评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,150评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,121评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,628评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,724评论 2 351

推荐阅读更多精彩内容