Day 4: 优化算法

1.Gradient Decent

把所有的训练样本丢进去训练一次之后,把W和b更新一次,然后重复这个过程,具体重复多少次就看我们的“迭代次数”是多少。

“把所有训练样本过一遍”为一个epoch

2. Mini-batch GD

我们训练的时候,跑完一个mini-batch就把W和b更新一次,这样的的话,在一个epoch中,我们就已经把参数更新了多次了!虽然每一步没有batch GD的一步走的准,但是我多步加起来,怎么样也比你走一步的效果好的多,因此可以加快训练速度,更快到达最值点。

对于不同的mini-batch的大小(size),也有不一样的效果:

size=样本数 —> Batch GD

size=1 —> Stochastic GD(随机梯度下降)

size=1的时候,会有两个问题:

1)震动太剧烈,误差会灰常大,可能根本无法到达最低点

2)每次只计算一个样本,就失去了我们前面提到的“Vectorization(矢量化)”的优势,因此计算效率反而不高

mini-batch size通常取2的指数,主要是16,32,64,128,256,512,1024这几个值,因为计算机是二进制,这样的数字计算起来效率会更高一些

3. Momentum 动量法

使用mini-batch之后,稳定性降低了,在梯度下降的时候会有较为剧烈的振动,这样可能导致在最低点附近瞎晃悠,因此效果会受影响。

参数更新过程

一般的梯度下降的更新过程(以W为例)是:W = W -α*dW。

动量法相当于多了一个V_dW,它考虑了前面若干个dW,(实际上,V_dW约等于前1/(1-β)个dW的平均值,数学上称为“指数加权平均”)这样,dW的方向就会受到前面若干个dW的冲击,于是整体就变得更平缓。

momentum更新示意图

mini-batch是上下起伏不定的箭头,但是把若干个的方向平均一下,就变得平缓多了,相当于抵消掉了很多的方向相反的误差

超参数β一般取0.9

4. Adam算法

momentum再进一步改进,结合了RMSprop算法(是另一种减小梯度下降振动的方法),更新过程如下:

Adam更新公式

learning-rate太小以及数据集比较简单的情况下momentum发挥不了太大的作用

Adam算法中的超参数β1和β2以及learning-rate也会显著影响模型,因此需要我们反复调试

一般β1=0.9和β2=0.999


参考文献

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,607评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,239评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,960评论 0 355
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,750评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,764评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,604评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,347评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,253评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,702评论 1 315
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,893评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,015评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,734评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,352评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,934评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,052评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,216评论 3 371
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,969评论 2 355

推荐阅读更多精彩内容