【Andrew Ng机器学习】单变量线性回归-梯度下降

课程:吴恩达机器学习


此篇我们将学习梯度下降算法,我们之前已经定义了代价函数J,梯度下降法可以将代价函数J最小化。
梯度下降是很常用的算法,他不仅被用在线性回归上,还被广泛应用与机器学习的众多领域。
之后,我们也会用到梯度下降法最小化其他函数,而不仅仅是最小化线性回归的额代价函数J。


我们的问题

  • 我们有一个代价函数J(\theta_0|theta_1$),可能是线性回归的代价函数,也可能是其他需要最小化的函数。
  • 我们需要用一个算法,来最小化代价函数J(\theta_0|theta_1$)。
  • 实际上梯度下降算法可应用于更一般的函数

J(\theta_0,\theta_1,\theta_2,\theta_3,...,\theta_n)
Goal:


但为了简化符号,接下来我们只使用两个参数。

梯度下降的思路

图像分析梯度下降
  • 开始给定\theta_0\theta_1的初始值。(设为什么值并不重要,但通常选择的是将\theta_0\theta_1都初始化为0)
  • 我们在梯度下降算法中要做的是不停地一点点地改变\theta_0\theta_1使J(\theta_0,\theta_1)变小,直到我们找到J的最小值或者局部最小值。
  1. 假设我们初始化\theta_0\theta_1在山腰上的这一点,那么我们应该朝什么方向迈步?
  2. 如果你看一下周围发现最佳的下山方向是如果方向那么:
  3. 此时又到了新的一点,那么同样的问题,我们应该往什么方向迈步?接着同样的步骤,按照自己的思路,并确定从哪个方向下山,然后又迈进了一小步又一小步,直到收敛至局部最低点。


  4. 梯度下降有一个有趣的特点, 如果初始点不同,重复上述动作,所得到的可能是不同的局部最优处。
  • 起始点偏移了一些, 就得到了完全不同的局部最优解
梯度下降的数学原理
  • 在视频中:
    赋值符合是":=",判断是否相等是"="。
  • a称为学习效率(迈步子的大小)
  • 求J(\theta_0,\theta_1)偏导我的理解是迈步子的方向,视频说后面会解释。
  • 注意\theta_0\theta_1需要同步更新
    用临时变量存储所有计算的结果,等所有的计算完了再赋值给参数。以下是错误的赋值方法:

这里先不解释为什么要同时更新,事实上使用梯度下降方法,同步更新是更自然的实现方法,当人们谈到梯度下降时,他们指的就是同步更新。
如果用非同步更新去实现算法,可能也会正确工作,但是这种方法并不是人们所指的那个梯度下降算法,而是具有不同性质的其他算法,这其中会表现出微小的差别,你应该做的是在梯度下降中真正实现同时更新。


下一篇,我们将详细讲一下导数项,如果已经学过微积分了,已经熟悉偏导数和导数,这其实就是这个导数项。通过下一篇,就能知道如何利用梯度下降算法了。
【Andrew Ng机器学习】单变量线性回归-梯度下降知识点总结

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容