Android 网络基础 - 计算机网络基本知识(TCP,UDP,Http,https)

简介

HTTP协议(超文本传输协议)和 UDP(用户数据包协议),TCP 协议(传输控制协议)

TCP/IP是个协议组,可分为四个层次:网络接口层、网络层、传输层和应用层。
在网络层有IP协议、ICMP协议、ARP协议、RARP协议和BOOTP协议。
在传输层中有TCP协议与UDP协议,arq协议。
在应用层有FTP、HTTP、TELNET、SMTP、DNS等协议。

image

TCP 与 UDP

TCP与UDP基本区别
image
UDP与TCP的区别与联系

一:UDP是面向无连接的协议,TCP 是面向连接的协议
UDP发出请求后,即发送数据之前不需要先连接,TCP 发送数据之前需要先连接
二:UDP 相对TCP来说是不可靠的
因为 UDP 在发送数据以后,没有采用超时重发,停止等待机制,拥塞控制
三:TCP 面向流,UDP 面向报文

TCP优缺点:

优点:
可靠,稳定
TCP的可靠体现在TCP在传递数据之前,会有三次握手来建立连接,而且在数据传递时,有确认、窗口、重传、拥塞控制机制,在数据传完后,还会断开连接用来节约系统资源。

缺点:
慢,效率低,占用系统资源高,易被攻击
TCP在传递数据之前,要先建连接,这会消耗时间,而且在数据传递时,确认机制、重传机制、拥塞控制机制等都会消耗大量的时间,而且要在每台设备上维护所有的传输连接,事实上,每个连接都会占用系统的CPU、内存等硬件资源。
而且,因为TCP有确认机制、三次握手机制,这些也导致TCP容易被人利用,实现DOS、DDOS、CC等攻击。

UDP优缺点:

优点:
快,比TCP稍安全
UDP没有TCP的握手、确认、窗口、重传、拥塞控制等机制,UDP是一个无状态的传输协议,所以它在传递数据时非常快。没有TCP的这些机制,UDP较TCP被攻击者利用的漏洞就要少一些。但UDP也是无法避免攻击的,比如:UDP Flood攻击……

缺点:
不可靠,不稳定 。因为UDP没有TCP那些可靠的机制,在数据传递时,如果网络质量不好,就会很容易丢包。

三次握手与四次挥手

三次握手

第一次握手:第一次连接时,客户端向服务器端发送SYN(syn=j),等待服务器端的确认,此时客户端进入SYN_SEND状态,SYN:同步序列号

第二次握手:服务器端收到客户端发来的SYN,必须向客户端发送ACK包(ack=j+1=k),同时自己必须发送一个SYN包,即syn+ack,此时进入SYN_REC状态

第三次握手:客户端收到服务器端发来的syn+ack包,向服务器发送ack包(ack=k+1),发送完毕,此时进入ESTABLISH状态,连接成功,完成第三次连接。

4次挥手

第一次挥手:当主机A完成数据传输后,将控制位FIN置1,提出停止TCP连接的请求
A进入终止等待1(FIN-WAIT-1)状态

第二次挥手:主机B收到FIN后对其作出响应,确认这一方向上的TCP连接将关闭,将ACK置1
tcp处于半关闭状态(half-close)
a收到b端的确认后,就进入终止等待2状态

第三次挥手:由B 端再提出反方向的关闭请求,将FIN置1
进入last-wait状态

第四次挥手:主机A对主机B的请求进行确认,将ACK置1,双方向的关闭结束.
进入时间等待状态(time-wait)
时间等待计数器设置的时间过了2msl以后,进入closed状态

三次握手的原因

如果只有两次握手的话,比如说失效的报文段,突然发送到服务端,服务端收到失效报文段的请求后,会发送确认报文,新的连接就建立起来了。但现在由于客户端并没有发出请求,所以并不会理睬服务端的确认,也不会像服务端发送数据。而服务端以为已经连接起来了,一直在等待,浪费资源。

四次挥手的原因

TCP建立连接要进行3次握手,而断开连接要进行4次,这是由于TCP的半关闭造成的,因为TCP连接是全双工的(
即数据可在两个方向上同时传递)所以进行关闭时每个方向上都要单独进行关闭,这个单方向的关闭就叫半关闭.

关闭的方法是一方完成它的数据传输后,就发送一个FIN来向另一方通告将要终止这个方向的连接.当一端收到一个FIN,它必须
通知应用层TCP连接已终止了这个方向的数据传送,发送FIN通常是应用层进行关闭的结果.

名词解释

ACK TCP报头的控制位之一,对数据进行确认.确认由目的端发出,用它来告诉发送端这个序列号之前的数据段
都收到了.比如,确认号为X,则表示前X-1个数据段都收到了,只有当ACK=1时,确认号才有效,当ACK=0时,确认号无效,这时会要求重传数据,保证数据的完整性.
SYN 同步序列号,TCP建立连接时将这个位置1
FIN 发送端完成发送任务位,当TCP完成数据传输需要断开时,提出断开连接的一方将这位置1

Http 与 https

Http 是在应用层上的传输协议,底层是 TCP 协议实现的,
它一种面向无状态的连接,短连接,
之所以说他无状态,是因为在每一次请求完成之后,都会把连接关了,不会记住是哪一个客户端连接

四种请求方式

get,post,pull,delete

请求信息有请求行,请求头,请求正文

请求行:请求方式,请求地址,请求协议
请求头:头名称,头值
请求正文:(只有post请求才会有)

响应信息有相应行,响应头,响应正文

响应行:响应协议,状态码,状态信息
响应 头:头名称和头值
响应正文

Http1.0与Http1.1,Http2.0的区别

http 2.0采用二进制的格式传送数据,不再使用文本格式传送数据
http2.0对消息头采用hpack压缩算法,http1.x的版本消息头带有大量的冗余消息
http2.0 采用多路复用,即用一个tcp连接处理所有的请求,真正意义上做到了并发请求,流还支持优先级和流量控制
http2.0支持server push,服务端可以主动把css,jsp文件主动推送到客户端,不需要客户端解析HTML,再发送请求,当客户端需要的时候,它已经在客户端了。

Http1.0一次只能处理一个请求和响应,Http1.1一次能处理多个请求和响应

  • 多个请求和响应过程可以重叠
  • 增加了更多的请求头和响应头,比如Host、If-Unmodified-Since请求头等

http和https的区别

主要的区别

1:在osi模型中,http工作于应用层,https工作与传输层

2:http传输的时候采用明文传输,https采用加密传输
3:http不需要证书,https需要响应额证书

4:http以http开头,默认端口是80,https 以https开头,默认的端口是243

上传视频的时候为什么不用 Http 协议?

因为上传视频的时候文件一般比较长,如果我们采用 post 请求的话,写到输出流中,它并不会直接写到服务器中,而是会缓存在内存中,会影响我们的执行效率

扩展补充

停止等待机制:是指每发送完一个分组,就会停止发送,必须受到对这个分组的确认才会继续发送下一个分组

超时重传:是指每发送一个分组,就会为这个分组启动一个超时计数器,在规定的时间内没有受到确认,就会再次发送这个分组。

在连续ARQ协议中,为提高信道利用率,通常采取的做法是发送方维持一个发送窗口,凡是位于该窗口内的分组都可以发送出去,无需等待确认,在接收方是采用累积确认,即对按需到达的分组后一个分组发送确认,表明在这个分组以前的所有分组都已正确接收到

拥塞控制与流量控制

流量控制是一个端到端的过程,是值接收方限制发送方的速率不要太快,使接收方来得及接收;拥塞控制是一个全局的过程,是只不要向网络注入太多的数据,导致链路或者路由器损坏;

拥塞控制采用四种算法:慢开始和拥塞控制,快重传和快恢复

慢开始是cwnd(拥塞窗口)每次回从1开始,每经过一个往返时间,cwnd的值就会加倍;
拥塞避免是指每经过一个往返时间,cwnd的值会加一,是一个线性的过程。
慢开始和拥塞避免:会设置一个慢开始门限,当cwnd《sshreh的时候,会采用满开始算法,当超过这个值的时候,会采用拥塞避免的算法,当出现拥塞的时候,会把sshreh的值取为发送方窗口值当前的一半,再把cwnd取为1,从1开始使用满开始算法。

快重传和快恢复收到三个重复确认的时候,会把sshreh的值置为当前值的一半,与慢开始不同的是,它会把拥塞窗口的值取为当前慢开始门限的一半,执行拥塞避免算法

快重传要求接收方没收到一段失序的报文段,就要向发送方发送一个确认

洪水攻击

向服务器端发送大量的伪TCP连接请求,这时候服务器端会进入syn_receive半连接状态,服务器端会尝试发送多次包来确认,因为这些连接时假冒的,所以并不会完成第三次握手,导致服务器端保持大量的半连接状态,耗费资源,是TCP连接队列被塞满。

解决方法:

1:做一些应急处理,对这些IP地址的特征来禁止响应的IP地址字段的访问。

2:应急处理毕竟太被动,因为本机房的F5比较空闲,运维利用F5来挡攻击,采用方式:让客户端先和F5三次握手,连接建立之后F5才转发到后端业务服务器。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,254评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,875评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,682评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,896评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,015评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,152评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,208评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,962评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,388评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,700评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,867评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,551评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,186评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,901评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,689评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,757评论 2 351

推荐阅读更多精彩内容