满足正太分布的随机数

Normally distributed pseudorandom numbers

目录:1.关于正太分布

             2.正太分布随机数的产生

             3.matlab中产生正太分布随机数的函数

一、什么是正太分布

正态分布(Normal distribution)是一种概率分布。正态分布是具有两个参数μ和σ^2的连续型随机变量的分布,第一参数μ是遵从正态分布的随机变量的均值,第二个参数σ^2是此随机变量的方差,所以正态分布记作N(μ,σ^2 )。遵从正态分布的随机变量的概率规律为取 μ邻近的值的概率大 ,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。

正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。它的形状是中间高两边低 ,图像是一条位于x 轴上方的钟形曲线。当μ=0σ^2 =1时,称为标准正态分布,记为N(0,1)


满足正太分布的密度函数

对于正态分布,我们只需要知道三件事,1)它长什么样的就是下图,2)他的两个参数,平均数和标准差,3)对于这个图的解释是什么,也就是平均数周围的得分在总体上占到大多数(平均数上下1.96个标准差的得分占到95%的总体)

首先,假如我们拿一个省的人口进行身高测量,那么我们可以将所有人的平均数和标准差求出,假如平均数为1.70,标准差为0.05。我们发现在平均数附近的人特别多,比如说在1.70-1.96*0.05到1.70+1.96*0.05的人占到了总人数的95%,这个时候我们大概能够判断出这个省的身高服从正态分布。

当然这只是举例方便大家好理解,那要得出身高为正态分布的这个结论,必须将数据与正态分布的概率密度函数进行拟合。这里对于一般采用spss进行数据分析的人来说,大可不必去纠缠于这些算法。我们只需要知道正态分布有什么特点,如何利用正态分布的特点进行参数的估计。

实际上大多数的牵涉到很大样本的数据都被证明是正态分布的,比如体重,学习成绩等。拿学习成绩来说,中等得分的学生占大多数,非常拔尖的以及非常差的占很少的一部分,这就是正态分布的特点。

参考链接:http://jingyan.baidu.com/article/f54ae2fc2354a31e92b84934.html

二、正太分布随机数的产生

下面提出了一种已知概率密度函数的分布的随机数的产生方法,以典型的正态分布为例来说名任意分布的随机数的产生方法。

从图中可以看出,在μ附近的概率密度大,远离μ的地方概率密度小,我们要产生的随机数要服从这种分布,就是要使产生的随机数在μ附近的概率要大,远离μ处小,怎样保证这一点呢,可以采用如下的方法:在图中的大矩形中随机产生点,这些点是平均分布的,如果产生的点落在概率密度曲线的下方,则认为产生的点是符合要求的,将它们保留,如果在概率密度曲线的上方,则认为这些点不合格,将它们去处。如果随机产生了一大批在整个矩形中均匀分布的点,那么被保留下来的点的横坐标就服从了正态分布。可以设想,由于在μ处的f(x)的值比较大,理所当然的在μ附近的点个数要多,远离μ处的少,这从面积上就可以看出来。我们要产生的随机数就是这里的横坐标。

基于以上思想,我们可以用程序实现在一定范围内服从正态分布的随机数。程序如下:

double Normal(double x,double miu,double sigma) //概率密度函数

{

return 1.0/sqrt(2*PI*sigma) * exp(-1*(x-miu)*(x-miu)/(2*sigma*sigma));

}

double NormalRandom(double miu,

double sigma,double min,double max)//产生正态分布随机数

{

double x;

double dScope;

double y;

do

{

x = AverageRandom(min,max);

y = Normal(dResult, miu, sigma);

dScope = AverageRandom(0, Normal(miu,miu,sigma));

}while( dScope > y);

return x;

}

参数说明:double miu:μ,正态函数的数学期望

double sigma:σ,正态函数的均方差

double min,double max,表明产生的随机数的范围


参考链接:http://blog.sina.com.cn/s/blog_7f18a96b0100tpac.html

三、matlab中产生正太分布随机数的函数randn

randn:Normally distributed pseudorandom numbers.

R = randn(N) returns an N-by-N matrix containing pseudorandom values drawn from the standard normal distribution. 

randn(M,N) or randn([M,N]) returns an M-by-N matrix. 

randn(M,N,P,...) or randn([M,N,P,...]) returns an M-by-N-by-P-by-... array. randn returns a scalar.  randn(SIZE(A)) returns an array the same size as A.

Note: The size inputs M, N, P, ... should be nonnegative integers.Negative integers are treated as 0.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容