基数是指一个集合中,不同的数的个数。
基数统计是集合不同的数的个数。比如说一个集合{0, 1, 2, 2, 4, 5},其基数是5,而个数是6。因为1重复出现了两次。基数是个去重统计。
基数估计是估计一个集合中不同的数的个数,不是数据总量的估计,也不是基数的精确计算。而是用概率算法的思想,来用低空间和时间成本,以一个很低的误差度来估计数据的基数。
Flajolet–Martin algorithm
这是一个概率算法,把集合的数,通过hash算法,均匀(理论上尽量均匀)hash到一个区间

- 定义 y的二进制表示的第k位的值
)
所以:
2^k) - 定义:
=\min_{k>=0}bit(y,k)\ne0, \rho(0)=L) - 算法描述如下:
- Initialize a bit-vector BITMAP to be of length L and contain all 0's.
- For each element X in M:
; y =hash(x) )
=1 ) - Let R denote the smallest index i such that
=0 ) - Estimate the cardinality of M as

where 
算法思想:
- 假设集合M一共有n个数,当集合M的x,均匀hash到新的hash空间[0, 2^L], 则BIT(0)能被访问n/2次。 因为最低bit位的0,1表示了奇偶数,均匀分布下,奇数大概有一半。所以有n/2的机会,使得BITMAP[0]=1, 同理 BITMAP[1]=1有n/4的机会
- 所以, 对于BITMAP[i] = 0的位置i,表示 n < 2^i, 所以算法中的R可以估计,n能使得BITMAP为1的位置的最高点。使得n约为2^R。 其中大约的系数和严格的证明,可以参考引用的论文。
[引用]
- Flajolet, Philippe; Martin, G. Nigel (1985). "Probabilistic counting algorithms for data base applications" (PDF). Journal of Computer and System Sciences. 31 (2): 182–209. doi:10.1016/0022-0000(85)90041-8.
LogLog algorithm
LogLog也是概率算法,使用m个bit位,使用的bit位m越大算法效果越好,具体算法过程如下:
- 与上面算法类似,需要把原始hash到一个数值空间M,即:

- 初始化m个存储位为0, 即:
}= 0; 1 \le i \le m; \ m=2^k ) - 同样定义:
=\min_{i>=0}bit(y,i)\ne0 \qquad [1]) - 对M中的每个x,


} := max \lbrack s^{(j)}, \rho(b{k+1}b_{k+2}\cdots) \rbrack ; ) - 计算基数估计,
}} )
算法思想:
- 在上面Flajolet–Martin算法的基础上,进行改进。 将集合M的元素分散到m个桶,然后每个桶中的元素采用Flajolet–Martin一致的思路。
- 对于有n个不同元素的集合M,大约有n/2^k个不同元素,它们的rho值(LogLog算法中式子[1])等于k。当k=1的时候,也就是n/2个元素会有BITMAP[0]=1(见Flajolet–Martin算法)。所以,
 := \max_{x \in M}\rho(x) )
可以作为 的粗略估计。 - 使用元素x的前k个bit位的值,作为m个桶的桶序号,把x落入相应的桶中。这样每个桶中的元素个数,大约是n/m
- 每个桶,采用2中描述的,可以对每个桶i的基数有估计出,有:
}) - 综合3,4可以知道,每个桶基数的期望是 n/m,等于每个桶基数估计的均值
}) - 所以大致上,
}} )
根据更深入的分析推导,有
}} )
其中,
\frac{1-2^{1/m}}{log2} \rbrack ^{-m}; \Gamma(s)=\frac1s\int_{0}{\infty}e{-t}t^sdt)
来修正均值带来的系统偏差 - 更详细的推导和论证参考引用文章
[引用]
- Durand, Marianne; Flajolet, Philippe (2003). "Loglog Counting of Large Cardinalities" (PDF). Algorithms - ESA 2003. Lecture Notes in Computer Science. 2832. p. 605. doi:10.1007/978-3-540-39658-1_55. ISBN 978-3-540-20064-2.
HyperLogLog algorithm
HyperLogLog算法,在LogLog算法上做了改进,就是把m个桶的平均值,从LogLog的几何平均数,改成了调和平均数.
在HyperLogLog的最终实现上,另外做了修正。对小、中、大范围的值,分别做了修正。具体算法描述如下:(描述了[0,10^9]内的基数估计)

=\min_{i>=0}bit(y,i)\ne0 )
 \ for \ m \ge 128; )
Program HyperLogLog(input M: multiset of items from domain D):
- 
- },s{(2)},\cdots,s^{(m)}, to \ 0;)
- 


} := max \lbrack s^{(j)}, \rho(b{k+1}b_{k+2}\cdots) \rbrack ; ) - }} \rbrack ^{-1} )
- small range correction


 \ else \ set \ E^{}:=E; \ endif)

intermediate range - no correction

large range correction
; \ endif) - return

[引用]
- Flajolet, P.; Fusy, E.; Gandouet, O.; Meunier, F. (2007). "HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm" (PDF). AOFA ’07: Proceedings of the 2007 International Conference on the Analysis of Algorithms.
基数估计算法的比较
应用
基数估计的应用比较广泛,对于存储空间和实时要求比较高,但是精度要求能容忍一定误差的时候,基数估计是个很好的选择。
基数估计的应用举例:
- HyperLogLog算法,在redis中也有应用。
- 基数估计应用在数据库优化中,用来估计复杂查询涉及的映射、连接等操作的数量。
- 路由器使用基数估计,在线实时的分析特定类型的事件,为防止Dos、port scan服务。
- 复杂的网络拓扑结构中,用来估计连接结点对的数量