第二周

Logistic Regression as a Neural Network

2-1 Binary Classification

基础的数学符号.png

第一讲说的比较简单, 简单的介绍了 input ouput 的概念

2-2 Logistic Regression 逻辑回归

逻辑回归是一种适用于二元分类的监督学习算法
逻辑回归的两个参数 w and b,w 为一个 nx 维矢量, b 为一个数
𝐺𝑖𝑣𝑒𝑛 𝑥 , 𝑦̂ = 𝑃(𝑦 = 1|𝑥), where 0 ≤ 𝑦̂ ≤ 1
Sigmoid function 是适用于 LR 算法的 逻辑函数

参考

  1. 简单说明LR

2-3 Logistic Regression: Cost Function

逻辑回归.png

这里面有两个测试算法准确度的函数
loss function: 简单就是说是预期的结果和真正的结果的比较函数,或者说单个训练样本的误差
cost function: 简单就是说 loss function 的一个平均值,或者说是针对整个训练集合的检测的误差

损失函数和成本函数.png

2-4 Gradient descent 梯度下降

梯度下降法(英语:Gradient descent)是一个一阶最优化算法,通常也称为最速下降法。 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点;这个过程则被称为梯度上升法
下面是两种梯度下降的原理,是一样的,只不过在使用导数的符号上有所不同

梯度下降1.png

梯度下降2.png

参考

机器学习中的梯度下降法

2-5, 2-6 derivatives 导数

wiki

2-7 2-8 Computation graph 计算图

计算图正向传播 forward 表示了计算过程
反向传播可以计算导数, 以为每一步都只有一个新的参数加入到计算中 所以利用前一个值的变化就可以推出新加入的参数的导数
导数是有公式的, 其实我的理解就是 下面的参数对上面的参数的影响 就是导数

2-9 Logistic Regression Gradient Descent

一次导数推导.png

之后

讲了些 Python 处理数据的问题, Python 学习
写代码指导原则之一就是尽量不用 runloop, 两个向量相乘的时候 可以使用 numpy 的 dot
计算图的优点之一就是让我们的代码更清晰

知识点拾遗

激活函数 Activation Function

所谓激活函数,就是在神经网络的神经元上运行的函数,负责将神经元的输入映射到输出端。常见的激活函数包括Sigmoid、TanHyperbolic(tanh)、ReLu、 softplus以及softmax函数。这些函数有一个共同的特点那就是他们都是非线性的函数。

数据预处理

数据预处理

numpy 中的 broadcasting

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,616评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,020评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,078评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,040评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,154评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,265评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,298评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,072评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,491评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,795评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,970评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,654评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,272评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,985评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,815评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,852评论 2 351

推荐阅读更多精彩内容