基于维基百科的人工智能问答系统DrQA

简介

DrQA是斯坦福大学和Facebook人工智能研究所今年4月份在arXiv发布的一个基于Wikipedia的Open-domain的QA系统,并与7月份在github上开源,以及在ACL上发表了一篇相关的文章。该系统只使用Wikipedia单一的数据源,目标是在大规模非结构化数据中根据输入的问题搜索出答案,特别针对MRS(大规模机器阅读)的任务。

  • DrQA系统结构


    image.png

DrQA for MRS

DrQA的核心组件包括两个部分:文档检索器和文档阅读器,

文档检索器

文档检索不涉及到任何机器学习的东西,目的是为了在海量的文章里面迅速找到最相关的几篇文章,DrQA 并未绑定任何特定类型的检索系统——只要其能有效地缩小搜索空间并重点关注相关文档即可。
主要基于一个基于稀疏的、TF-IDF 加权的词袋向量的有效文档检索系统。这里使用了 bags of hashed n-grams(这里是 unigrams 和 bigrams)。

  • 创建一个sqlite的数据库用于存储Wikipedia的文章
python build_db.py /path/to/data /path/to/saved/db.db
  • Building the TF-IDF N-grams
python build_tfidf.py /path/to/doc/db /path/to/output/dir
  • Interactive
python scripts/retriever/interactive.py --model /path/to/model
>>> process('question answering', k=5)

+------+-------------------------------+-----------+
| Rank |             Doc Id            | Doc Score |
+------+-------------------------------+-----------+
|  1   |       Question answering      |   327.89  |
|  2   |       Watson (computer)       |   217.26  |
|  3   |          Eric Nyberg          |   214.36  |
|  4   |   Social information seeking  |   212.63  |
|  5   | Language Computer Corporation |   184.64  |
+------+-------------------------------+-----------+
文档阅读器

DrQA 的文档阅读器是一个多层循环神经网络机器理解模型,被训练用来执行提取式的问答。也就是说,该模型会使用一个返回的文档中的一段文本来作为问题的答案。
该文档阅读器的灵感来自于 SQuAD 数据集,并且也主要是在这个数据集上训练的。它也可以在类似于 SQuAD 的任务上单独使用,其中可以通过问题、包含在上下文中的答案来提供一个特定的语境。

Demo效果

image.png

参考

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,193评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,306评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,130评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,110评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,118评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,085评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,007评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,844评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,283评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,508评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,667评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,395评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,985评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,630评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,797评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,653评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,553评论 2 352