(一)七大原则

一 设计模式的目的

设计模式是为了让程序(软件),具有更好

  1. 代码重用性 (即:相同功能的代码,不用多次编写)
  2. 可读性 (即:编程规范性, 便于其他程序员的阅读和理解)
  3. 可扩展性 (即:当需要增加新的功能时,非常的方便,称为可维护)
  4. 可靠性 (即:当我们增加新的功能后,对原来的功能没有影响)
  5. 使程序呈现高内聚低耦合的特性

二 单一职责原则

对类来说的,即一个类应该只负责一项职责。如类 A 负责两个不同职责:职责 1,职责 2。当职责 1 需求变更 而改变 A 时,可能造成职责 2 执行错误,所以需要将类 A 的粒度分解为 A1,A2

这个问题经常会出现在我的代码中

2.1 职责混乱

public class SingleResponsibility1 {

    public static void main(String[] args) {
        // TODO Auto-generated method stub
        Vehicle vehicle = new Vehicle();
        vehicle.run("摩托车");
        vehicle.run("汽车");
        vehicle.run("飞机");
    }

}

// 交通工具类
// 方式1
// 1. 在方式1 的run方法中,违反了单一职责原则
// 2. 解决的方案非常的简单,根据交通工具运行方法不同,分解成不同类即可
class Vehicle {
    public void run(String vehicle) {
        System.out.println(vehicle + " 在公路上运行....");
    }
}

问题:飞机也变成在公路上运行的了。

2.2 解决办法

  1. 可以每种类型的交通工具单独一个类(标准)
  2. 也可以每种类型的交通工具单独一个方法
    核心是职责单一,具体使用哪种视复杂情况而定

2.3 单一职责原则注意事项和细节

  1. 降低类的复杂度,一个类只负责一项职责。
  2. 提高类的可读性可维护性
  3. 降低变更引起的风险
  4. 通常情况下,我们应当遵守单一职责原则,只有逻辑足够简单,才可以在代码级违反单一职责原则;只有类中 方法数量足够少,可以在方法级别保持单一职责原则(就是上面的2.2)

三 接口隔离原则

(Interface Segregation Principle)

客户端不应该依赖它不需要的接口,即一个类对另一个类的依赖应该 建立在最小的接口上(解读:虽然实际依赖是B,但我们的依赖是Interface1,面向接口编程嘛,接口负责定义。那如果是接口,也应该是最小的接口)

image.png

3.1处理原则

将接口 Interface1 拆分为独立的几个接口(这里我们拆分成 3 个接口), 类 A 和类 C 分别与他们需要的接口建立
依赖关系。 也就是采用接口隔离原则

3.2 应用实例

原来 B和D都要实现Interface1的5个方法

现在拆分了Interface1

// 接口1
interface Interface1 {
    void operation1();

}

// 接口2
interface Interface2 {
    void operation2();

    void operation3();
}

// 接口3
interface Interface3 {
    void operation4();

    void operation5();
}

class B implements Interface1, Interface2 {
    public void operation1() {
        System.out.println("B 实现了 operation1");
    }

    public void operation2() {
        System.out.println("B 实现了 operation2");
    }

    public void operation3() {
        System.out.println("B 实现了 operation3");
    }

}
image.png

四 依赖倒转原则

4.1 概念

依赖倒转原则(Dependence Inversion Principle)是指:

  1. 高层模块不应该依赖低层模块, 二者都应该依赖其抽象
  2. 抽象不应该依赖细节, 细节应该依赖抽象
  3. 依赖倒转(倒置)的中心思想是面向接口编程
  4. 依赖倒转原则是基于这样的设计理念: 相对于细节的多变性, 抽象的东西要稳定的多。 以抽象为基础搭建的架
    构比以细节为基础的架构要稳定的多。 在 java 中, 抽象指的是接口或抽象类, 细节就是具体的实现类
  5. 使用接口或抽象类的目的是制定好规范, 而不涉及任何具体的操作, 把展现细节的任务交给他们的实现类去完

4.2 例子-发送邮件

public class DependecyInversion {

    public static void main(String[] args) {
        Person person = new Person();
        person.receive(new Email());
    }

}

class Email {
    public String getInfo() {
        return "电子邮件信息: hello,world";
    }
}

class Person {
    public void receive(Email email ) {
        System.out.println(email.getInfo());
    }
}

分析
优点: 简单,比较容易想到
缺点: 如果我们获取的对象是 微信,短信等等,则新增类,同时Perons也要增加相应的接收方法
解决思路:引入一个抽象的接口IReceiver, 表示接收者, 这样Person类与接口IReceiver发生依赖
因为Email, WeiXin 等等属于接收的范围,他们各自实现IReceiver 接口就ok, 这样我们就符合依赖倒转原则

4.3 优化方案

package com.atguigu.principle.inversion.improve;

public class DependecyInversion {

    public static void main(String[] args) {
        //客户端无需改变
        Person person = new Person();
        person.receive(new Email());
        
        person.receive(new WeiXin());
    }

}

//定义接口
interface IReceiver {
    public String getInfo();
}

class Email implements IReceiver {
    public String getInfo() {
        return "电子邮件信息: hello,world";
    }
}

//增加微信
class WeiXin implements IReceiver {
    public String getInfo() {
        return "微信信息: hello,ok";
    }
}

//方式2
class Person {
    //这里我们是对接口的依赖
    public void receive(IReceiver receiver ) {
        System.out.println(receiver.getInfo());
    }
}

4.4 依赖关系传递的三种方式

  1. 接口传递
  2. 构造方法传递
  3. setter 方式传递

这个感觉没什么好说的就是看依赖是作为 方法参数/set方法参数/构造方法参数.

4.5 注意事项和细节

  1. 低层模块尽量都要有抽象类或接口, 或者两者都有, 程序稳定性更好.
  2. 变量的声明类型尽量是抽象类或接口, 这样我们的变量引用和实际对象间, 就存在一个缓冲层(本质就是本来可以利用多态进行扩展), 利于程序扩展
    和优化
  3. 继承时遵循里氏替换原则

五 里氏替换原则

5.1 OO 中的继承性的思考和说明

  1. 继承包含这样一层含义: 父类中凡是已经实现好的方法, 实际上是在设定规范和契约, 虽然它不强制要求所有 的子类必须遵循这些契约, 但是如果子类对这些已经实现的方法任意修改, 就会对整个继承体系造成破坏。
  2. 继承在给程序设计带来便利的同时, 也带来了弊端。 比如使用继承会给程序带来侵入性, 程序的可移植性降低,
    增加对象间的耦合性, 如果一个类被其他的类所继承, 则当这个类需要修改时, 必须考虑到所有的子类, 并且
    父类修改后, 所有涉及到子类的功能都有可能产生故障
  3. 问题提出: 在编程中, 如何正确的使用继承? => 里氏替换原则

就是父类一变,子类都会受到影响(重写的我觉得不会)

5.2 基本介绍

  1. 里氏替换原则(Liskov Substitution Principle)在 1988 年, 由麻省理工学院的以为姓里的女士提出的。
  2. 如果对每个类型为 T1 的对象 o1, 都有类型为 T2 的对象 o2, 使得以 T1 定义的所有程序 P 在所有的对象 o1 都
    代换成 o2 时, 程序 P 的行为没有发生变化, 那么类型 T2 是类型 T1 的子类型。 换句话说, 所有引用基类的地
    方必须能透明地使用其子类的对象。
  3. 在使用继承时, 遵循里氏替换原则, 在子类中尽量不要重写父类的方法
  4. 里氏替换原则告诉我们, 继承实际上让两个类耦合性增强了, 在适当的情况下, 可以通过聚合, 组合, 依赖 来 解决问题
    总结
  1. 如果我们想要继承某个类时,可以考虑将所有的·不需要重写的方法·(不可能全重写,不然为什么还要继承)单独抽取到一个更高层次的类中。然后将要重写的方法设置成抽象的,等待子类来实现。这样本来A要继承B,现在AB是同级了。耦合降低
  2. 上面的透明就是用子类或父类应该效果一样,这样就不能重写了(重写多了,多态很有可能会导致我们的预期值和实际值不符)

5.3 问题代码

public class Liskov {

    public static void main(String[] args) {
        // TODO Auto-generated method stub
        A a = new A();
        System.out.println("11-3=" + a.func1(11, 3));
        System.out.println("1-8=" + a.func1(1, 8));

        System.out.println("-----------------------");
        B b = new B();
        System.out.println("11-3=" + b.func1(11, 3));//这里本意是求出11-3
        System.out.println("1-8=" + b.func1(1, 8));// 1-8
        System.out.println("11+3+9=" + b.func2(11, 3));
        
        

    }

}

// A类
class A {
    // 返回两个数的差
    public int func1(int num1, int num2) {
        return num1 - num2;
    }
}

// B类继承了A
// 增加了一个新功能:完成两个数相加,然后和9求和
class B extends A {
    //这里,重写了A类的方法, 可能是无意识
    public int func1(int a, int b) {
        return a + b;
    }

    public int func2(int a, int b) {
        return func1(a, b) + 9;
    }
}

5.4 继承是为了扩展,而不是重写(关系提升)

就是5.1 总结的第一点

public class Liskov {

    public static void main(String[] args) {
        // TODO Auto-generated method stub
        A a = new A();
        System.out.println("11-3=" + a.func1(11, 3));
        System.out.println("1-8=" + a.func1(1, 8));

        System.out.println("-----------------------");
        B b = new B();
        //因为B类不再继承A类,因此调用者,不会再func1是求减法
        //调用完成的功能就会很明确
        System.out.println("11+3=" + b.func1(11, 3));//这里本意是求出11+3
        System.out.println("1+8=" + b.func1(1, 8));// 1+8
        System.out.println("11+3+9=" + b.func2(11, 3));
        
        
        //使用组合仍然可以使用到A类相关方法
        System.out.println("11-3=" + b.func3(11, 3));// 这里本意是求出11-3
        

    }

}

//创建一个更加基础的基类
class Base {
    //把更加基础的方法和成员写到Base类
}

// A类
class A extends Base {
    // 返回两个数的差
    public int func1(int num1, int num2) {
        return num1 - num2;
    }
}

// B类继承了A
// 增加了一个新功能:完成两个数相加,然后和9求和
class B extends Base {
    //如果B需要使用A类的方法,使用组合关系
    private A a = new A();
    
    //这里,重写了A类的方法, 可能是无意识
    public int func1(int a, int b) {
        return a + b;
    }

    public int func2(int a, int b) {
        return func1(a, b) + 9;
    }
    
    //我们仍然想使用A的方法
    public int func3(int a, int b) {
        return this.a.func1(a, b);
    }
}

六 开闭原则(Open Closed Principle)

6.1 基本介绍

  1. 开闭原则(Open Closed Principle)是编程中最基础、最重要的设计原则
  2. 一个软件实体如类,模块和函数应该对扩展开放(对提供方),对修改关闭(对使用方)。用抽象构建框架,用实现扩展细节
  3. 当软件需要变化时,尽量通过扩展软件实体的行为来实现变化,而不是通过修改已有的代码来实现变化。
  4. 编程中遵循其它原则,以及使用设计模式的目的就是遵循开闭原则。

6.2 示例

本质是使用抽象,通过实现来扩展(第二条原则)

public class Ocp {

    public static void main(String[] args) {
        //使用看看存在的问题
        GraphicEditor graphicEditor = new GraphicEditor();
        graphicEditor.drawShape(new Rectangle());
        graphicEditor.drawShape(new Circle());
        graphicEditor.drawShape(new Triangle());
        graphicEditor.drawShape(new OtherGraphic());
    }

}

//这是一个用于绘图的类 [使用方]
class GraphicEditor {
    //接收Shape对象,调用draw方法
    public void drawShape(Shape s) {
        s.draw();
    }

    
}

//Shape类,基类
abstract class Shape {
    int m_type;
    
    public abstract void draw();//抽象方法
}

class Rectangle extends Shape {
    Rectangle() {
        super.m_type = 1;
    }

    @Override
    public void draw() {
        // TODO Auto-generated method stub
        System.out.println(" 绘制矩形 ");
    }
}

class Circle extends Shape {
    Circle() {
        super.m_type = 2;
    }
    @Override
    public void draw() {
        // TODO Auto-generated method stub
        System.out.println(" 绘制圆形 ");
    }
}

//新增画三角形
class Triangle extends Shape {
    Triangle() {
        super.m_type = 3;
    }
    @Override
    public void draw() {
        // TODO Auto-generated method stub
        System.out.println(" 绘制三角形 ");
    }
}

//新增一个图形
class OtherGraphic extends Shape {
    OtherGraphic() {
        super.m_type = 4;
    }

    @Override
    public void draw() {
        // TODO Auto-generated method stub
        System.out.println(" 绘制其它图形 ");
    }
}

七 迪米特法则

7.1 基本介绍

  1. 一个对象应该对其他对象保持最少的了解
  2. 类与类关系越密切,耦合度越大
  3. 迪米特法则(Demeter Principle)又叫最少知道原则,即一个类对自己依赖的类知道的越少越好。也就是说,对于 被依赖的类不管多么复杂,都尽量将逻辑封装在类的内部。对外除了提供的 public方法,不对外泄露任何信息
  4. 迪米特法则还有个更简单的定义:只与直接的朋友通信
  5. 直接的朋友:每个对象都会与其他对象有耦合关系,只要两个对象之间有耦合关系,我们就说这两个对象之间 是朋友关系。耦合的方式很多,依赖,关联,组合,聚合等。其中,我们称出现成员变量,方法参数,方法返 回值中的类直接的朋友,而出现在局部变量中的类不是直接的朋友。也就是说,陌生的类最好不要以局部变量的形式出现在类的内部。

就是类和类之间如果有耦合,最好不要用局部变量。

7.2 错误示例

    //该方法完成输出学校总部和学院员工信息(id)
    void printAllEmployee(CollegeManager sub) {
        
        //分析问题
        //1. 这里的 CollegeEmployee 不是  SchoolManager的直接朋友
        //2. CollegeEmployee 是以局部变量方式出现在 SchoolManager
        //3. 违反了 迪米特法则 
        
        //获取到学院员工
        List<CollegeEmployee> list1 = sub.getAllEmployee();
        System.out.println("------------学院员工------------");
        for (CollegeEmployee e : list1) {
            System.out.println(e.getId());
        }
        //获取到学校总部员工
        List<Employee> list2 = this.getAllEmployee();
        System.out.println("------------学校总部员工------------");
        for (Employee e : list2) {
            System.out.println(e.getId());
        }
    }

7.3 改进

原因:减少耦合性

    //该方法完成输出学校总部和学院员工信息(id)
    void printAllEmployee(CollegeManager sub) {
        
        //分析问题
        //1. 将输出学院的员工方法,封装到CollegeManager
        sub.printEmployee();
    
        //获取到学校总部员工
        List<Employee> list2 = this.getAllEmployee();
        System.out.println("------------学校总部员工------------");
        for (Employee e : list2) {
            System.out.println(e.getId());
        }
    }
}

7.4 注意事项和细节

  1. 迪米特法则的核心是降低类之间的耦合
  2. 但是注意:由于每个类都减少了不必要的依赖,因此迪米特法则只是要求降低类间(对象间)耦合关系, 并不是要求完全没有依赖关系

八 合成复用原则(Composite Reuse Principle)

8.1 基本原则

原则是尽量使用合成/聚合的方式,而不是使用继承

image.png

参考

  1. 尚硅谷-设计模式
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,128评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,316评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,737评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,283评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,384评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,458评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,467评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,251评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,688评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,980评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,155评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,818评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,492评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,142评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,382评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,020评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,044评论 2 352