Flink SQL 性能调优--MiniBatch提升吞吐率

Flink 在设计和实现流计算算子时,把“面向状态编程”作为第一准则。因为在流计算中,为了保证状态(State)的一致性,需要将状态数据存储在状态后端(StateBackend),由框架来做分布式快照。而目前主要使用的RocksDB状态后端会在每次read和write操作时发生序列化和反序列化操作,甚至是磁盘的 I/O 操作。因此状态的相关操作通常都会成为整个任务的性能瓶颈,状态的数据结构设计以及对状态的每一次访问都需要特别注意。

微批(MiniBatch)的核心思想就是缓存一小批数据,在访问状态状态时,同key 的数据就只需要发生一次状态的操作。当批次内数据的 key 重复率较大时,能显著降低对状态的访问频次,从而大幅提高吞吐。

下图说明了MiniBatch如何减少状态操作。

minibatch_agg

当未开启 MiniBatch 时,Aggregate 的处理模式是每来一条数据,查询一次状态,进行聚合计算,然后写入一次状态。当有 4条数据时,需要操作 2*4 次状态

当开启 MiniBatch 时,对于缓存下来的 N 条数据一起触发,同 key 的数据只会读写状态一次。例如下缓存的 4 条 A 的记录,只会对状态读写各一次。所以当数据的 key 的重复率越大,攒批的大小越大,那么对状态的访问会越少,得到的吞吐量越高。

适用场景

微批处理通过增加延迟换取高吞吐,如果您有超低延迟的要求,不建议开启微批处理。通常对于聚合的场景,微批处理可以显著的提升系统性能,建议开启。

开启方式

MiniBatch默认关闭,开启方式如下:

// instantiate table environment
TableEnvironment tEnv = ...

// access flink configuration
Configuration configuration = tEnv.getConfig().getConfiguration();
// set low-level key-value options
configuration.setString("table.exec.mini-batch.enabled", "true"); // enable mini-batch optimization
configuration.setString("table.exec.mini-batch.allow-latency", "5 s"); // use 5 seconds to buffer input records
configuration.setString("table.exec.mini-batch.size", "5000"); // the maximum number of records can be buffered by each aggregate operator task

MiniBatch生效的SQL语句

MiniBatch主要作用于聚合(Group By)语句中,且不带window的场景。

window agg

select count(a) from t group by tumble(ts, interval ’10’ second), b

以10秒翻转窗口和字段b聚合,该场景MiniBatch不生效

group agg

select count(a) from t group by b

以字段a聚合,该场景MiniBatch生效

over agg

select count(a) over (partition by b order by c) from t 

over window,该场景MiniBatch不生效

MiniBatch二种聚合优化

Local-Global 聚合

LocalGlobal优化将原先的Aggregate分成Local+Global两阶段聚合,即MapReduce模型中的Combine+Reduce处理模式。

  • 第一阶段在上游节点本地攒一批数据进行聚合(localAgg),并输出这次微批的增量值(Accumulator)。
  • 第二阶段再将收到的Accumulator合并(Merge),得到最终的结果(GlobalAgg)。

LocalGlobal本质上能够靠localAgg的预聚合筛除部分倾斜数据,从而降低globalAgg的热点,提升性能。

可以结合下图及SQL理解LocalGlobal如何解决数据倾斜的问题。

SELECT color, sum(id)
FROM T
GROUP BY color
local_agg
  • 使用场景:

    • LocalGlobal适用于提升如SUM、COUNT、MAX、MIN和AVG等普通聚合的性能,能提高算子吞吐量,也能有效解决常见数据热点问题
  • 配置:

    • table.optimizer.agg-phase-strategy开启(默认值已为AUTO开启,所以不用配置)

    • // instantiate table environment
      TableEnvironment tEnv = ...
      
      // access flink configuration
      Configuration configuration = tEnv.getConfig().getConfiguration();
      // set low-level key-value options
      configuration.setString("table.exec.mini-batch.enabled", "true"); // local-global aggregation depends on mini-batch is enabled
      configuration.setString("table.exec.mini-batch.allow-latency", "5 s");
      configuration.setString("table.exec.mini-batch.size", "5000");
      configuration.setString("table.optimizer.agg-phase-strategy", "TWO_PHASE"); // enable two-phase, i.e. local-global aggregation
      

Partial-Final聚合

Local-Global聚合能针对常见普通聚合有较好的效果(如SUM、COUNT、MAX、MIN和AVG)。但是对于COUNT DISTINCT效果并不明显。COUNT DISTINCT在local聚合时,对于DISTINCT KEY的去重率不高,导致在Global节点仍然存在热点。

PartialFinal优化会自动打散成两层聚合,增加按distinct key取模的打散层,解决COUNT DISTINCT的热点问题。

可以结合下图及SQL理解Partial-Final如何解决COUNT DISTINCT热点问题。

-- 原始SQL
SELECT day, COUNT(DISTINCT user_id)
FROM T
GROUP BY day

-- PartialFinal优化后SQL
SELECT day, SUM(cnt)
FROM (
    SELECT day, COUNT(DISTINCT user_id) as cnt
    FROM T
    GROUP BY day, MOD(HASH_CODE(user_id), 1024)
)
GROUP BY day
distinct_split
  • 使用场景:

    • PartialFinal优化方法适用于使用COUNT DISTINCT且聚合节点性能无法满足时。
    • PartialFinal优化方法不能在包含UDAF的Flink SQL中使用。
  • 配置:

    • table.optimizer.distinct-agg.split.enabled开启(默认值已为false,需要设置为true)

    • table.optimizer.distinct-agg.split.bucket-num(默认值1024,可以根据业务数据量和热点情况,设置这个取模值)

    • // instantiate table environment
      TableEnvironment tEnv = ...
      
      tEnv.getConfig()        // access high-level configuration
        .getConfiguration()   // set low-level key-value options
        .setString("table.optimizer.distinct-agg.split.enabled", "true");  // enable distinct agg split
      
  • 建议: 数据量不大的情况下不建议使用PartialFinal优化方法。PartialFinal优化会自动打散成两层聚合,引入额外的网络Shuffle,在数据量不大的情况下,可能反而会浪费资源。

数据抖动现象

所谓数据抖动问题是指,两层 AGG 时,第一层 AGG 发出的更新消息会拆成两条独立的消息被下游消费,分别是retract 消息和 accumulate 消息。而当第二层 AGG 消费这两条消息时也会发出两条消息。从前端看到就是数据会有抖动的现象。例如下面的例子,统计买家数,这里做了两层打散,第一层先做 UV 统计,第二级做SUM。

SELECT day, SUM(cnt) total
FROM (
  SELECT day, MOD(buy_id, 1024), COUNT(DISTINCT buy_id) as cnt
  FROM T GROUP BY day, MOD(buy_id, 1024))
GROUP BY day

当第一层count distinct的结果从100上升到101时,它会发出 -100, +101 的两条消息。当第二层的 SUM 会依次收到这两条消息并处理,假设此时 SUM 值是 900,那么在处理 -100 时,会先发出 800 的结果值,然后处理 +101 时,再发出 901 的结果值。从用户端的感受就是买家数从 900 降到了 800 又上升到了 901,我们称之为数据抖动。而理论上买家数只应该只增不减的,所以我们也一直在思考如何解决这个问题。

数据抖动的本质原因是 retract 和 accumulate 消息是一个事务中的两个操作,但是这两个操作的中间结果被用户看到了,也就是传统数据库 ACID 中的隔离性中最弱的 READ UNCOMMITTED 的事务保障。要从根本上解决这个问题的思路是,如何原子地处理 retract & accumulate 的消息。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,826评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,968评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,234评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,562评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,611评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,482评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,271评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,166评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,608评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,814评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,926评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,644评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,249评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,866评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,991评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,063评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,871评论 2 354