时间序列的ADF检验(单位根检验)

from statsmodels.tsa.stattools import adfuller

我使用的是python的statsmodels。
1532680234(1).jpg

可以看到里面的参数
x:array_like,1维,时间序列

maxlag:int型,最大延迟阶数

regression:Constant and trend order to include in regression,回归中包含的常数和趋势阶数。解释一下:ADF检验和DF检验一样可以用于三种类型的单位根检验。(王燕,应用时间序列分析,6.3.2ADF检验,分了三种类型,代码里给了四种类型)

    * 'c' : constant only (default),默认,仅有常数均值。
    * 'ct' : constant and trend,有常数均值,有趋势。
    * 'ctt' : constant, and linear and quadratic trend,有常数均值有线性和二次趋势。
    * 'nc' : no constant, no trend,无常数均值,无趋势。

当选择的回归类型不同时,检验结果也会不同。我在这里深深地踩了一个坑。可以看一下时序图,你的数据是否有趋势,是否有常数均值。
autolag : {'AIC', 'BIC', 't-stat', None},自动选择延迟阶数
* if None, then maxlag lags are used,如果选择none,则使用最大延迟阶数
* if 'AIC' (default) or 'BIC', then the number of lags is chosen
to minimize the corresponding information criterion,如果选择AIC或者BIC,则延迟阶数是根据相应的最小信息准则决定的。(BIC就是SBC准则)(王燕,应用时间序列分析,3.3.6模型优化)
* 't-stat' based choice of maxlag. Starts with maxlag and drops a
lag until the t-statistic on the last lag length is significant
using a 5%-sized test,这个选择要基于最大延迟maxlag,从最大延迟阶数开始,每次减少一个延迟,直到某一阶延迟的t统计量对5%来说是显著的。(也就是说p_value值小于0.05,显著拒绝原假设,证明无单位根,也就是说序列是平稳的)


image.png

这是我的数据的检测结果。
第一部分是τ(tao)统计量的值。
第二部分是p_value的值。
第三部分是结果使用的延迟阶数。
第四部分是ADF回归和计算临界值所使用的观察次数。
第五部分是临界值。
第六部分是最大的信息准则的值(如果autolag 非空),也就是AIC或者BIC的值。
当我们看序列是否平稳的结果时,一般首先看第二部分的p_value值。如果p_value值比0.05小,证明有单位根,也就是说序列平稳。如果p_value比0.05大则证明非平稳。
源码里有一句note,如果p_value接近于0.05时,则要通过临界值进行判断。也就是说如果p_value接近于0.05就要通过第一部分τ(tao)统计量的值和第五部分的临界值进行对比。τ(tao)统计量的值比临界值小,就证明平稳,反之就是非平稳。我的检测结果τ(tao)统计量的值再临界值5%-10%之间。比5%的临界值大。这里的1%,5%,10%对应的是99%,95%,90%置信区间。
ADF检验只适合AR(P)模型。
且对方差齐性效果好,对异方差性效果不佳。异方差可用PP检验。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343

推荐阅读更多精彩内容