学习目标
找出目标图集中相似度最高的图片;
开发环境
JDK 8, OpenCV 2.3.14, Windows 7 64位;
测试图
源码
package com.dotions.opencv;
import java.util.Arrays;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfDMatch;
import org.opencv.core.MatOfKeyPoint;
import org.opencv.features2d.DMatch;
import org.opencv.features2d.DescriptorExtractor;
import org.opencv.features2d.DescriptorMatcher;
import org.opencv.features2d.FeatureDetector;
import org.opencv.highgui.Highgui;
/**
* @author Scott 2018-02-05
*/
public class TestImageSearch {
/**
* @param args
*/
public static void main(String[] args) {
// 声明系统库
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
String f1 = "C:\\Users\\demo\\Pictures\\test\\CA4517-1-1.jpg";
String f2 = "C:\\Users\\demo\\Pictures\\test\\CB4943-5.jpg";
String f3 = "C:\\Users\\demo\\Pictures\\test\\CA4517-1-2.jpg";
String f4 = "C:\\Users\\demo\\Pictures\\test\\CB4943-4.jpg";
String f5 = "C:\\Users\\demo\\Pictures\\test\\CA4517-1-3.jpg";
String url = find(f1, Arrays.asList(f2, f3, f4, f5));
System.out.println("原图为:" + f1);
System.out.println("最相似的图片为:" + url);
}
/**
* 找出最相似的图片
* @param base 原图
* @param imgs 目标图集
* @return 最相似的图片
*/
public static String find(String base, List<String> imgs) {
FeatureDetector detector = FeatureDetector.create(FeatureDetector.SURF);
DescriptorExtractor extractor = DescriptorExtractor.create(DescriptorExtractor.SURF);
DescriptorMatcher matcher = DescriptorMatcher.create(DescriptorMatcher.FLANNBASED);
Mat baseDesc = getDescriptors(detector, extractor, base);
Mat tempDesc;
String resultImage = null;
double minScore = Double.MAX_VALUE;
double score;
for (String f : imgs) {
tempDesc = getDescriptors(detector, extractor, f);
score = computeScore(baseDesc, tempDesc, matcher);
if (score < minScore) {
minScore = score;
resultImage = f;
}
}
return resultImage;
}
public static Mat getDescriptors(FeatureDetector fd, DescriptorExtractor de, String fname) {
Mat src = Highgui.imread(fname);
MatOfKeyPoint kp = new MatOfKeyPoint();
fd.detect(src, kp);
Mat desc = new Mat();
de.compute(src, kp, desc);
return desc;
}
/**
* 计算相似度(此处用方差来作为衡量标准,可以用其他算法替换)
* */
public static double computeScore(Mat desc1, Mat desc2, DescriptorMatcher dm) {
MatOfDMatch mdm = new MatOfDMatch();
dm.match(desc1, desc2, mdm);
double maxDist = Double.MIN_VALUE;
double minDist = Double.MAX_VALUE;
DMatch[] mats = mdm.toArray();
double dist = 0.0d;
for (int i = 0; i < mats.length; i++) {
dist = mats[i].distance;
if (dist < minDist)
minDist = dist;
if (dist > maxDist)
maxDist = dist;
}
List<DMatch> goodMatches = new LinkedList<>();
for (int i = 0; i < mats.length; i++) {
dist = mats[i].distance;
if (dist < 5 * minDist) {
goodMatches.add(mats[i]);
}
}
List<Float> list = goodMatches.stream().map(m -> m.distance).collect(Collectors.toList());
Float[] dists = list.toArray(new Float[] {});
double score = computeScore(dists);
System.out.println("maxDist=" + maxDist);
System.out.println("minDist=" + minDist);
System.out.println("score=" + score);
System.out.println("--------------------------------");
return score;
}
/**
* 计算数组的方差
*/
public static double computeScore(Float[] dists) {
double sum = 0.0d;
for (int i = 0; i < dists.length; i++) {
sum += dists[i];
}
double avg = sum / dists.length;
double dvar = 0.0d;
for (int i = 0; i < dists.length; i++) {
dvar += (dists[i] - avg) * (dists[i] - avg);
}
return dvar;
}
}
运行结果
maxDist=0.6122338175773621
minDist=0.039984580129384995
score=14.781858758643258
--------------------------------
maxDist=0.7934221625328064
minDist=0.0831444263458252
score=94.25050941872964
--------------------------------
maxDist=0.8908746838569641
minDist=0.08397696167230606
score=74.58133620484614
--------------------------------
maxDist=0.8740571141242981
minDist=0.08881661295890808
score=92.69089855851176
--------------------------------
原图为:C:\Users\demo\Pictures\test\1.jpg
最相似的图片为:C:\Users\demo\Pictures\test\2.jpg