上面两篇大部分介绍的都是理论知识,希望看到前两篇的都读读。读一遍 不容易理解现在这一篇是介绍api操作的。相对来说容易些也是方便我自己记忆。
RDD的两种类型操作。
有哪两种操作呢?分别是transformation ,action 也是我们上面所说的转换 和行动。
Transformations 使用的是常用的api操作还有很多可能介绍不到
- map():将原来的RDD的每个数据想根据自定义函数进行映射,转换成一个新的RDD。
SparkConf conf = new SparkConf().setMaster("local").setAppName("My App Test");
JavaRDD<String> pairRDD = scContext.parallelize(Arrays.asList("a","b","c"));
pairRDD.map(result -> result.split(" "));
- filter(): 使用该函数 对RDD数据进行过滤。将符合条件的RDD中的数据 组成新的RDD返回。
JavaRDD<String> pairRDD = scContext.parallelize(Arrays.asList("a","b","c"));
// pairRDD.map(result -> result.split(" "));
JavaRDD<String> resultRdd=pairRDD.filter( content -> {
return content.equals('s') ;
}) ;
}
- flatMap()类似与Map(),不过这个map,返回值是一个数据项集合,而不是一个单项的数据项。
- mapPartitions:类似于Map,不过该操作是在每个分区上分别执行的,所以当操作一个类型为T的RDD必须是Iterator =>Iterator 。
- sample():对数据进行采样用户可以设定,是否有放回,采样的百分比,随机种子等。
- union():聚合操作。可以用来合并多个集合。但是使用union函数时必须抱枕RDD的理性是相同。
- distinct();去重操作。将重复的内容排除掉。
- intersection() : 返回两个数据集的交集。
- groupByKey(): 进行分组。默认情况下并行情况是根据父RDD的分区数来确定的。但是可以自己指定任务数。
-
reduceByKey():聚合操作:函数格式必须是(V,V)=>V。也可指定任务数。
参考例子:
Action
reduce(func)
使用函数func聚集数据集中的元素,这个函数func输入为两个元素,返回为一个元素。这个函数应该符合结合律和交换了,这样才能保证数据集中各个元素计算的正确性。
collect()
在驱动程序中,以数组的形式返回数据集的所有元素。通常用于filter或其它产生了大量小数据集的情况。
count()
返回数据集中元素的个数。
first()
返回数据集中的第一个元素(类似于take(1))。
take(n)
返回数据集中的前n个元素。
takeSample(withReplacement,num, [seed])
对一个数据集随机抽样,返回一个包含num个随机抽样元素的数组,参数withReplacement指定是否有放回抽样,参数seed指定生成随机数的种子。
takeOrdered(n, [ordering])
返回RDD按自然顺序或自定义顺序排序后的前n个元素。
saveAsTextFile(path)
将数据集中的元素以文本文件(或文本文件集合)的形式保存到指定的本地文件系统、HDFS或其它Hadoop支持的文件系统中。Spark将在每个元素上调用toString方法,将数据元素转换为文本文件中的一行记录。
saveAsSequenceFile(path) (Java and Scala)
将数据集中的元素以Hadoop Sequence文件的形式保存到指定的本地文件系统、HDFS或其它Hadoop支持的文件系统中。该操作只支持对实现了Hadoop的Writable接口的键值对RDD进行操作。在Scala中,还支持隐式转换为Writable的类型(Spark包括了基本类型的转换,例如Int、Double、String等等)。
saveAsObjectFile(path) (Java and Scala)
将数据集中的元素以简单的Java序列化的格式写入指定的路径。这些保存该数据的文件,可以使用SparkContext.objectFile()进行加载。
countByKey()
仅支持对(K,V)格式的键值对类型的RDD进行操作。返回(K,Int)格式的Hashmap,(K,Int)为每个key值对应的记录数目。
foreach(func)
对数据集中每个元素使用函数func进行处理。该操作通常用于更新一个累加器(Accumulator)或与外部数据源进行交互。注意:在foreach()之外修改累加器变量可能引起不确定的后果。详细介绍请阅读