spark初识三

上面两篇大部分介绍的都是理论知识,希望看到前两篇的都读读。读一遍 不容易理解现在这一篇是介绍api操作的。相对来说容易些也是方便我自己记忆。

RDD的两种类型操作。

有哪两种操作呢?分别是transformation ,action 也是我们上面所说的转换 和行动。

Transformations 使用的是常用的api操作还有很多可能介绍不到

  1. map():将原来的RDD的每个数据想根据自定义函数进行映射,转换成一个新的RDD。
    SparkConf  conf = new SparkConf().setMaster("local").setAppName("My App Test");
        
        JavaRDD<String>  pairRDD =  scContext.parallelize(Arrays.asList("a","b","c"));
        
        pairRDD.map(result ->  result.split(" "));  
  1. filter(): 使用该函数 对RDD数据进行过滤。将符合条件的RDD中的数据 组成新的RDD返回。
        JavaRDD<String>  pairRDD =  scContext.parallelize(Arrays.asList("a","b","c"));
        
//      pairRDD.map(result ->  result.split(" "));  
        JavaRDD<String> resultRdd=pairRDD.filter( content  -> {
            return  content.equals('s') ; 
        }) ;
    }
  1. flatMap()类似与Map(),不过这个map,返回值是一个数据项集合,而不是一个单项的数据项。
  2. mapPartitions:类似于Map,不过该操作是在每个分区上分别执行的,所以当操作一个类型为T的RDD必须是Iterator =>Iterator 。
  3. sample():对数据进行采样用户可以设定,是否有放回,采样的百分比,随机种子等。
  4. union():聚合操作。可以用来合并多个集合。但是使用union函数时必须抱枕RDD的理性是相同。
  5. distinct();去重操作。将重复的内容排除掉。
  6. intersection() : 返回两个数据集的交集。
  7. groupByKey(): 进行分组。默认情况下并行情况是根据父RDD的分区数来确定的。但是可以自己指定任务数。
  8. reduceByKey():聚合操作:函数格式必须是(V,V)=>V。也可指定任务数。
    参考例子:


    PairRdd的转化操作

Action

reduce(func)
使用函数func聚集数据集中的元素,这个函数func输入为两个元素,返回为一个元素。这个函数应该符合结合律和交换了,这样才能保证数据集中各个元素计算的正确性。

collect()
在驱动程序中,以数组的形式返回数据集的所有元素。通常用于filter或其它产生了大量小数据集的情况。

count()
返回数据集中元素的个数。

first()
返回数据集中的第一个元素(类似于take(1))。

take(n)
返回数据集中的前n个元素。

takeSample(withReplacement,num, [seed])
对一个数据集随机抽样,返回一个包含num个随机抽样元素的数组,参数withReplacement指定是否有放回抽样,参数seed指定生成随机数的种子。

takeOrdered(n, [ordering])
返回RDD按自然顺序或自定义顺序排序后的前n个元素。

saveAsTextFile(path)
将数据集中的元素以文本文件(或文本文件集合)的形式保存到指定的本地文件系统、HDFS或其它Hadoop支持的文件系统中。Spark将在每个元素上调用toString方法,将数据元素转换为文本文件中的一行记录。

saveAsSequenceFile(path) (Java and Scala)
将数据集中的元素以Hadoop Sequence文件的形式保存到指定的本地文件系统、HDFS或其它Hadoop支持的文件系统中。该操作只支持对实现了Hadoop的Writable接口的键值对RDD进行操作。在Scala中,还支持隐式转换为Writable的类型(Spark包括了基本类型的转换,例如Int、Double、String等等)。

saveAsObjectFile(path) (Java and Scala)
将数据集中的元素以简单的Java序列化的格式写入指定的路径。这些保存该数据的文件,可以使用SparkContext.objectFile()进行加载。

countByKey()
仅支持对(K,V)格式的键值对类型的RDD进行操作。返回(K,Int)格式的Hashmap,(K,Int)为每个key值对应的记录数目。

foreach(func)
对数据集中每个元素使用函数func进行处理。该操作通常用于更新一个累加器(Accumulator)或与外部数据源进行交互。注意:在foreach()之外修改累加器变量可能引起不确定的后果。详细介绍请阅读

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352

推荐阅读更多精彩内容