TF-IDF与余弦相似性的应用 - 学习笔记

引用:
TF-IDF与余弦相似性的应用(一):自动提取关键词
TF-IDF与余弦相似性的应用(二):找出相似文章
TF-IDF与余弦相似性的应用(三):自动摘要

使用TF-IDF提取关键词

目标:提取某个文章中的关键词。

一些基本思想:

  • 找到出现次数最多的词。如果某个词很重要,它应该在这篇文章中多次出现。
  • 我们可能发现"中国"、"蜜蜂"、"养殖"这三个词的出现次数一样多。这是不是意味着,作为关键词,它们的重要性是一样的?显然不是这样。因为"中国"是很常见的词,相对而言,"蜜蜂"和"养殖"不那么常见。如果这三个词在一篇文章的出现次数一样多,有理由认为,"蜜蜂"和"养殖"的重要程度要大于"中国"
  • 如果某个词比较少见,但是它在这篇文章中多次出现,那么它很可能就反映了这篇文章的特性,正是我们所需要的关键词。

第一步,计算词频 TF Term Frequency:

计算词频 TF

考虑到文章有长短之分,为了便于不同文章的比较,进行"词频"标准化。
计算词频 TF

第二步,计算逆文档频率 IDF Inverse Document Frequency:
需要一个语料库(corpus),用来模拟语言的使用环境。

计算逆文档频率 IDF

如果一个词越常见,那么分母就越大,逆文档频率就越小越接近0。

第三步,计算TF-IDF:

计算TF-IDF

可以看到,TF-IDF与一个词在文档中的出现次数成正比,与该词在整个语言中的出现次数成反比。

所以,自动提取关键词的算法就很清楚了,就是计算出文档的每个词的TF-IDF值,然后按降序排列,取排在最前面的几个词。

除了自动提取关键词,TF-IDF算法还可以用于许多别的地方。比如,信息检索时,对于每个文档,都可以分别计算一组搜索词("中国"、"蜜蜂"、"养殖")的TF-IDF,将它们相加,就可以得到整个文档的TF-IDF。这个值最高的文档就是与搜索词最相关的文档。

TF-IDF算法的优点是简单快速,结果比较符合实际情况。缺点是,单纯以"词频"衡量一个词的重要性,不够全面,有时重要的词可能出现次数并不多。而且,这种算法无法体现词的位置信息,出现位置靠前的词与出现位置靠后的词,都被视为重要性相同,这是不正确的。

使用余弦相似性找出相似的文章

句子A:我喜欢看电视,不喜欢看电影。
句子B:我不喜欢看电视,也不喜欢看电影。

如何计算这两句话的相似程度?

第一步,分词:

句子A:我/喜欢/看/电视,不/喜欢/看/电影。
句子B:我/不/喜欢/看/电视,也/不/喜欢/看/电影。

第二步,列出所有的词:

我,喜欢,看,电视,电影,不,也

第三步,计算词频:

句子A:我 1,喜欢 2,看 2,电视 1,电影 1,不 1,也 0
句子B:我 1,喜欢 2,看 2,电视 1,电影 1,不 2,也 1。

第四步,写出词频向量:

句子A:[1, 2, 2, 1, 1, 1, 0]
句子B:[1, 2, 2, 1, 1, 2, 1]

到这里,问题就变成了如何计算这两个向量的相似程度。
我们可以把它们想象成空间中的两条线段,都是从原点([0, 0, ...])出发,指向不同的方向。两条线段之间形成一个夹角,如果夹角为0度,意味着方向相同、线段重合;如果夹角为90度,意味着形成直角,方向完全不相似;如果夹角为180度,意味着方向正好相反。因此,我们可以通过夹角的大小,来判断向量的相似程度。夹角越小,就代表越相似。

两个二维向量的夹角

假定A和B是两个n维向量,A是 [A1, A2, ..., An] ,B是 [B1, B2, ..., Bn] ,则A与B的夹角θ的余弦等于:


两个n维向量的夹角

使用这个公式,我们就可以得到,句子A与句子B的夹角的余弦:


句子A与句子B的夹角的余弦

余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,这就叫"余弦相似性"。所以,上面的句子A和句子B是很相似的,事实上它们的夹角大约为20.3度。

由此,我们就得到了"找出相似文章"的一种算法:

  • 使用TF-IDF算法,找出两篇文章的关键词;
  • 每篇文章各取出若干个关键词(比如20个),合并成一个集合,计算每篇文章对于这个集合中的词的词频(为了避免文章长度的差异,可以使用相对词频);
  • 生成两篇文章各自的词频向量;
  • 计算两个向量的余弦相似度,值越大就表示越相似。

自动摘要

一些基本思想:

  • 文章的信息都包含在句子中,有些句子包含的信息多,有些句子包含的信息少。"自动摘要"就是要找出那些包含信息最多的句子。
  • 句子的信息量用"关键词"来衡量。如果包含的关键词越多,就说明这个句子越重要。Luhn提出用"簇"(cluster)表示关键词的聚集。所谓"簇"就是包含多个关键词的句子片段。

"簇"(cluster)表示关键词的聚集

被框起来的部分就是一个"簇"。只要关键词之间的距离小于某个"阈值",它们就被认为处于同一个簇之中。Luhn建议的门槛值是4或5。也就是说,如果两个关键词之间有5个以上的其他词,就可以把这两个关键词分在两个簇。

对于每个簇,都计算它的重要性分值:

计算簇的重要性分值

例如,以前图为例,其中的簇一共有7个词,其中4个是关键词。因此,它的重要性分值等于 ( 4 x 4 ) / 7 = 2.3。

然后,找出包含分值最高的簇的句子(比如5句),把它们合在一起,就构成了这篇文章的自动摘要。

Luhn的这种算法后来被简化,不再区分"簇",只考虑句子包含的关键词。下面就是一个例子(采用伪码表示),只考虑关键词首先出现的句子。

Summarizer(originalText, maxSummarySize):

    // 计算原始文本的词频,生成一个数组,比如[(10,'the'), (3,'language'), (8,'code')...]
    wordFrequences = getWordCounts(originalText)

    // 过滤掉停用词,数组变成[(3, 'language'), (8, 'code')...]
    contentWordFrequences = filtStopWords(wordFrequences)

    // 按照词频进行排序,数组变成['code', 'language'...]
    contentWordsSortbyFreq = sortByFreqThenDropFreq(contentWordFrequences)

    // 将文章分成句子
    sentences = getSentences(originalText)

    // 选择关键词首先出现的句子
    setSummarySentences = {}
    foreach word in contentWordsSortbyFreq:
      firstMatchingSentence = search(sentences, word)
      setSummarySentences.add(firstMatchingSentence)
      if setSummarySentences.size() = maxSummarySize:
        break

    // 将选中的句子按照出现顺序,组成摘要
    summary = ""
    foreach sentence in sentences:
      if sentence in setSummarySentences:
        summary = summary + " " + sentence

    return summary

类似的算法已经被写成了工具,比如基于Java的Classifier4J库的SimpleSummariser模块

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,076评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,658评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,732评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,493评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,591评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,598评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,601评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,348评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,797评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,114评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,278评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,953评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,585评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,202评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,180评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,139评论 2 352

推荐阅读更多精彩内容