信息论基础(熵、相对熵、交叉熵、互信息)

熵(Shannon Entropy)

又称为“香农熵”或“信息熵”,是一个随机变量不确定性(信息量)的度量,也可理解为随机变量在信息系统中的编码长度。对于离散型随机变量 X \sim p(x),其信息熵可定义为:H(X)=-\sum_{x\in X}p(x)logp(x)熵正则化中,主要思想是利用信息熵衡量模型的Class Overlap(分类重合度)。熵越大,类别间重合度越大,模型分类的随机性越强,分类效果越差。因此,目标函数中引入信息熵作为一个正则项:C(\theta,\lambda)=L(\theta)-\lambda H(y|x)最大化目标函数,即熵最小化

相对熵(Relative Entropy)

又称为“信息散度”或“KL散度”,是两个概率分布间差异的非对称性度量,即这两个分布间的“距离”,等价于两个概率分布的信息熵的差值。对于离散型随机变量X的两个不同概率分布p(x)q(x)pq的相对熵可定义为:D_{KL}(p||q)=\sum_{x\in X}p(x)log\frac{p(x)}{q(x)}=\sum_{x\in X}p(x)logp(x)-\sum_{x\in X}p(x)logq(x)假设一个概率分布为真实分布,另一个为理论(拟合)分布,相对熵表示使用理论分布拟合真实分布时产生的信息损耗。

交叉熵(Cross Entropy)

两个概率分布pq,其中p表示真实分布,q表示非真实分布,在相同的一组事件中,用非真实分布q来表示某个事件发生所需要的平均比特数,即用分布q表示目标分布p的困难程度:H(p,q)=-\sum_{x\in X}p(x)logq(x)可以注意到,D_{KL}(p||q)=H(p,q)-H(p)当目标分布p固定不变时,H(p)为常量,因此最小化交叉熵H(p,q)等价于最小化这两个分布的相对熵D_{KL}(p||q),即让模型训练得到的分布尽可能地接近真实分布。

互信息(Mutual Information)

表示一个随机变量中包含的关于另一个随机变量的信息量,或者说是一个随机变量由于已知另一个随机变量而减少的不确定性(缩减的信息量)。对于两个随机变量XY,设X的先验概率为p(x),后验概率为p(x|y),则定义X的后验概率与先验概率比值的对数为YX的互信息量:I(X;Y)=H(X)-H(X|Y)最小化互信息,即最小化随机变量的不确定性。设这两个随机变量的联合分布为p(x,y),边缘分布为p(x)p(y),展开可得,I(X;Y)=\sum_{x\in X}\sum_{y\in Y}p(x,y)log\frac{p(x,y)}{p(x)p(y)}=D_{KL}(p(x,y)||p(x)p(y))即互信息是联合分布与边缘分布的相对熵。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,869评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,716评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,223评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,047评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,089评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,839评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,516评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,410评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,920评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,052评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,179评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,868评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,522评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,070评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,186评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,487评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,162评论 2 356

推荐阅读更多精彩内容