python:利用多种方式解微分方程(以二阶微分系统零状态响应为例)

1.问题:求系统的零状态响应

image.png

2.引入

首先用高数知识求解非齐次常系数微分方程

image.png

再利用信号与系统中冲激响应求解验证

image.png

利用MATLAB求解验证

y=dsolve('D2y+3*Dy+2*y=exp(-t)','y(0)=1','Dy(0)=2','t')

得出结果:

y =
 
                          (t - 2 exp(-t) + 3) exp(-t)

根据结果检验,上述手动计算与实际计算机得出结果一致。

t=0:0.1:20;
y = (t - 2 .*exp(-t) + 3) .*exp(-t);
y1=-exp(-t) .*(t - 2 .*exp(-t) + 3) + exp(-t).* (1 + 2.* exp(-t));
plot(t,y,'r-',t,y1,'b-'),legend('y','y’')

用MATLAB模拟图像结果:


image.png

3.利用Python求解该方程

通过上述计算,我们利用Python求解系统的零状态响应:

库函数准备

scipy
sympy
matplotlib
numpy

利用sympy进行符号解法

from sympy import *
init_printing()
#定义符号常量x 与 f(x)
x = Symbol('x')
f = symbols('f', cls=Function)
#用diffeq代表微分方程: f''(x) + 3f'(x) + 2f(x) = exp(-x)
diffeq = Eq(f(x).diff(x, x) + 3*f(x).diff(x) + 2*f(x), exp(-x))
#调用dsolve函数,返回一个Eq对象,hint控制精度
print(dsolve(diffeq, f(x)))

得到符号解,输出如下

Eq(f(x), (C1 + C2*exp(-x) + x)*exp(-x))

在带入初始松弛条件:

C1=-2
C2=3

结果与我们计算结果一致。

利用Numpy和Scipy进行数值解法

import matplotlib.pyplot as plt
from scipy import linspace,exp
from scipy.integrate import odeint, solve_bvp, solve_ivp
import numpy as np

'''
    为了兼容solve_ivp的参数形式,微分方程函数定义的参数顺序为(t,y),因此使用odeint函数时需要使参数tfirst=True
    二阶甚至高阶微分方程组都可以变量替换成一阶方程组的形式,再调用相关函数进行求解,因此编写函数的时候,不同于一阶微分方程,二阶或者高阶微分方程返回的是低阶到高阶组成的方程组,

'''


def fvdp1(t,y):
    '''
    要把y看出一个向量,y = [dy0,dy1,dy2,...]分别表示y的n阶导,那么
    y[0]就是需要求解的函数,y[1]表示一阶导,y[2]表示二阶导,以此类推
    '''
    dy1 = y[1]      # y[1]=dy/dt,一阶导
    dy2 = -3 * y[1] - 2 * y[0] + exp( -1 * t ) 
    # y[0]是最初始,也就是需要求解的函数
    # 注意返回的顺序是[一阶导, 二阶导],这就形成了一阶微分方程组
    return [dy1,dy2] 

# 或者下面写法更加简单
def fvdp2(t,y):
    '''
    要把y看出一个向量,y = [dy0,dy1,dy2,...]分别表示y的n阶导
    对于二阶微分方程,肯定是由0阶和1阶函数组合而成的,所以下面把y看成向量的话,y0表示最初始的函数,也就是我们要求解的函数,y1表示一阶导,对于高阶微分方程也可以以此类推
    '''
    y0, y1 = y   
    # y0是需要求解的函数,y1是一阶导
    # 返回的顺序是[一阶导, 二阶导],这就形成了一阶微分方程组
    dydt = [y1, -3*y1-2*y0+exp(-t)] 
    
    return dydt

def solve_second_order_ode():
    '''
    求解二阶ODE
    '''
    t2 = linspace(0,20,1000)
    tspan = (0, 20.0)
    y0 = [1.0, 2.0] # 初值条件
    # 初值[2,0]表示y(0)=2,y'(0)=0
    # 返回y,其中y[:,0]是y[0]的值,就是最终解,y[:,1]是y'(x)的值
    y = odeint(fvdp1, y0, t2, tfirst=True)
    
    y_ = solve_ivp(fvdp2, t_span=tspan, y0=y0, t_eval=t2)
    
    plt.subplot(211)
    y1, = plt.plot(t2,y[:,0],label='y')
    y1_1, = plt.plot(t2,y[:,1],label='y‘')             
    plt.legend(handles=[y1,y1_1])
    
    plt.subplot(212)
    y2, = plt.plot(y_.t, y_.y[0,:],'g--',label='y(0)')
    y2_2, = plt.plot(y_.t, y_.y[1,:],'r-',label='y(1)')
    plt.legend(handles=[y2,y2_2])
    
    plt.show()
    
solve_second_order_ode()

结果:


image.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,546评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,224评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,911评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,737评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,753评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,598评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,338评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,249评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,696评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,888评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,013评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,731评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,348评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,929评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,048评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,203评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,960评论 2 355

推荐阅读更多精彩内容

  • 在我们初、高中和大学近10年的学习时间里,数学一直占据着非常大的分量,但是回忆过去可以发现,我们把大量的时间都花在...
    李东bbsky阅读 6,107评论 0 7
  • 本章涉及知识点1、微分方程的定义2、一阶线性微分方程的定义3、求齐次线性方程通解的算法4、求非齐次线性方程通解的算...
    PrivateEye_zzy阅读 40,010评论 1 16
  • 本章导航: 介绍 SymPy 的基础语法。 举了两个实例介绍如何使用 SymPy 做数学研究。 9.1 Pytho...
    水之心阅读 3,558评论 0 6
  • 人多时,管住嘴,话多、错多、是非多,自找麻烦;人少时,管住心,妄念、妄想、痛苦多,自找烦恼。群处守嘴,独处守心。修...
    子誓不染阅读 139评论 0 1
  • 蓝鸥强大的师资阵容,纯净的教育理念,严格的管理制度,使其成为了美国苹果公司AATC认证官方授权培训中心、Unity...
    IT兵哥阅读 664评论 0 0