06 pandas DataFrame - 数据过滤、NaN处理、统计方法

=== 数据过滤获取 ===

个人觉得并没有什么用,完全可以用切片或索引器代替

stu_info = pd.read_excel('student_info1.xlsx',sheetname='countif',index_col='学号').head(3)
stu_info[stu_info.columns[0:]]

=== 缺失值处理 ===

原数据:

stu_info = pd.read_csv('student_info1.csv',header=1)
stu_info
#stu_info[stu_info.isnull()] 像Series这一处理是不行的

1、删除nan

# 删除nan行
stu_info.dropna()
# 删除nan列
stu_info.dropna(axis=1)

# 设置阈值
# 如果一行都是nan才删除
stu_info.dropna(how='all')

2、设置NaN的值

# 将nan设置为0
stu_info.fillna(0)

使用nan下一行的值进行填充 (axis=1列填充)

stu_info.fillna(method='bfill')

使用nan上一行的值进行填充 (axis=1列填充)

stu_info.fillna(method='ffill')

按列填充

stu_info.fillna({'Math':100,'English':0})

值替换 将语文成绩中88分换成99分

stu_info.replace({88:99})

=== 统计方法 ===

1、 计数方法count只记非nan值 (axis=1 按列)

stu_info.count()

2、总统计值

stu_info.describe()

3、最值、累加

stu_info.max()
stu_info.min()
stu_info.sum()

4、中位数 quantile median

stu_info.quantile()
stu_info.median()

5、 最大值的索引值

stu_info.idxmax()
#stu_info.argmax()#在0.21版本中删除了

6、 偏科程度(判断一组数据的最大值和最小值差别是不是很大)

stu_info.mad(axis=1)

7、 样本值累计和
本行值加上一行的值,88+33=121

stu_info.cumsum()

8、变化率

stu_info.pct_change()

第一行NaN,因为上一行没有数据,无法计算变化率
正的是增长的百分率,负的是减少的半分率


=== 常用统计方法 ===

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,635评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,628评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,971评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,986评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,006评论 6 394
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,784评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,475评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,364评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,860评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,008评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,152评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,829评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,490评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,035评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,156评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,428评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,127评论 2 356

推荐阅读更多精彩内容