鲁棒性和有效性的运动规划算法是四旋翼飞行器在复杂环境下实现自主飞行的关键。环境表征作为感知模块与规划模块之间的桥梁,对生成轨迹的质量有着巨大的影响。人们提出了各种算法来构建导航地图,每种算法对应不同的规划方法。
为了提高四旋翼飞行器的自主导航能力,哈尔滨工业大学的研究团队提出了一个新的映射规划框架(如图1所示)来导航在线四旋翼飞行器的飞行。在映射模块中,使用多面体来表示观察到的障碍物,从占用网格图中提取环境信息,以便为运动规划提供各种信息。规划模块中,通过构建局部拓扑图来有效地覆盖潜在搜索区域,利用该图指导基于分割运动原语的路径搜索,并采用基于多项式的优化方法得到安全、平滑的轨迹。
这种新的映射规划框架,能在线构建多面体环境,提供全面的障碍物信息,并利用设计的拓扑规划器,采用分段搜索加速策略,有效生成与障碍物有足够间隙的安全、平滑的轨迹。
大量的仿真和实验验证了这个新的映射规划框架的有效性。其中在实际飞行实验中,NOKOV度量动作捕捉设备为四旋翼飞行器提供了高精度的室内定位信息。
实验结果表明,这种新的映射规划框架在计算效率和轨迹质量方面均优于所选基准。通过实际飞行验证了该框架的鲁棒性和有效性。
参考文献
Junjie Gao, Fenghua He, Wei Zhang, and Yu Yao. (2023). Obstacle-Aware Topological Planning over Polyhedral Representation for Quadrotors. In International Conference on Robotics and Automation (ICRA).