Python-pandas--set_index与reset_index

set_index()

  • 函数原型:DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False)
  • 参数解释:
    keys:列标签或列标签/数组列表,需要设置为索引的列
    drop:默认为True,删除用作新索引的列
    append:默认为False,是否将列附加到现有索引
    inplace:默认为False,适当修改DataFrame(不要创建新对象)
    verify_integrity:默认为false,检查新索引的副本。否则,请将检查推迟到必要时进行。将其设置为false将提高该方法的性能。

入门级api

#!/usr/bin/python3
# -*- coding: utf-8 -*-
# @Time    : 2019-06-06 13:09
# @Author  : LiYahui
# @Description :  set_index demo
import pandas as pd

data = {'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10', 'A11'],
        'B': ['B0', 'B1', 'B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B9', 'B10', 'B11'],
        'C': ['C0', 'C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9', 'C10', 'C11'],
        'D': ['D0', 'D1', 'D2', 'D3', 'D4', 'D5', 'D6', 'D7', 'D8', 'D9', 'D10', 'D11']}
df = pd.DataFrame(data)
# print(df)
'''
      A    B    C    D
0    A0   B0   C0   D0
1    A1   B1   C1   D1
2    A2   B2   C2   D2
3    A3   B3   C3   D3
4    A4   B4   C4   D4
5    A5   B5   C5   D5
6    A6   B6   C6   D6
7    A7   B7   C7   D7
8    A8   B8   C8   D8
9    A9   B9   C9   D9
10  A10  B10  C10  D10
11  A11  B11  C11  D11
'''
# drop=True
df1 = df.set_index("A", drop=True, append=False, inplace=False, verify_integrity=False)
# print(df1)
'''
       B    C    D
A                 
A0    B0   C0   D0
A1    B1   C1   D1
A2    B2   C2   D2
A3    B3   C3   D3
A4    B4   C4   D4
A5    B5   C5   D5
A6    B6   C6   D6
A7    B7   C7   D7
A8    B8   C8   D8
A9    B9   C9   D9
A10  B10  C10  D10
A11  B11  C11  D11
'''
# drop=False
df2 = df.set_index("A", drop=False, append=False, inplace=False, verify_integrity=False)
# print(df2)
'''
       A    B    C    D
A                      
A0    A0   B0   C0   D0
A1    A1   B1   C1   D1
A2    A2   B2   C2   D2
A3    A3   B3   C3   D3
A4    A4   B4   C4   D4
A5    A5   B5   C5   D5
A6    A6   B6   C6   D6
A7    A7   B7   C7   D7
A8    A8   B8   C8   D8
A9    A9   B9   C9   D9
A10  A10  B10  C10  D10
A11  A11  B11  C11  D11
'''
# append=True
df3 = df.set_index("A", drop=False, append=True, inplace=False, verify_integrity=False)
# print(df3)
'''
          A    B    C    D
   A                      
0  A0    A0   B0   C0   D0
1  A1    A1   B1   C1   D1
2  A2    A2   B2   C2   D2
3  A3    A3   B3   C3   D3
4  A4    A4   B4   C4   D4
5  A5    A5   B5   C5   D5
6  A6    A6   B6   C6   D6
7  A7    A7   B7   C7   D7
8  A8    A8   B8   C8   D8
9  A9    A9   B9   C9   D9
10 A10  A10  B10  C10  D10
11 A11  A11  B11  C11  D11
'''

# inplance=True
df4 = df.set_index("A", drop=False, append=True, inplace=True, verify_integrity=False)
print(df4)
# 不知道为什么
'''
None
'''

reset_index()

  • 函数原型:DataFrame.reset_index(level=None, drop=False, inplace=False, col_level=0, col_fill='')
  • 参数解释:
    level:int、str、tuple或list,默认无,仅从索引中删除给定级别。默认情况下移除所有级别。控制了具体要还原的那个等级的索引
    drop:drop为False则索引列会被还原为普通列,否则会丢失
    inplace:默认为false,适当修改DataFrame(不要创建新对象)
    col_level:int或str,默认值为0,如果列有多个级别,则确定将标签插入到哪个级别。默认情况下,它将插入到第一级。
    col_fill:对象,默认‘’,如果列有多个级别,则确定其他级别的命名方式。如果没有,则重复索引名
  • 注:reset_index还原分为两种类型,第一种是对原DataFrame进行reset,第二种是对使用过set_index()函数的DataFrame进行reset
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# @Time    : 2019-06-06 13:21
# @Author  : LiYahui
# @Description : reset_index demo
import pandas as pd

data = {'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10', 'A11'],
        'B': ['B0', 'B1', 'B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B9', 'B10', 'B11'],
        'C': ['C0', 'C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9', 'C10', 'C11'],
        'D': ['D0', 'D1', 'D2', 'D3', 'D4', 'D5', 'D6', 'D7', 'D8', 'D9', 'D10', 'D11']}
df = pd.DataFrame(data)
# print(df)
'''
      A    B    C    D
0    A0   B0   C0   D0
1    A1   B1   C1   D1
2    A2   B2   C2   D2
3    A3   B3   C3   D3
4    A4   B4   C4   D4
5    A5   B5   C5   D5
6    A6   B6   C6   D6
7    A7   B7   C7   D7
8    A8   B8   C8   D8
9    A9   B9   C9   D9
10  A10  B10  C10  D10
11  A11  B11  C11  D11
'''
# drop=True
df1 = df.set_index("A", drop=True, append=False, inplace=False, verify_integrity=False)
# print(df1)
'''
       B    C    D
A                 
A0    B0   C0   D0
A1    B1   C1   D1
A2    B2   C2   D2
A3    B3   C3   D3
A4    B4   C4   D4
A5    B5   C5   D5
A6    B6   C6   D6
A7    B7   C7   D7
A8    B8   C8   D8
A9    B9   C9   D9
A10  B10  C10  D10
A11  B11  C11  D11
'''
# drop=False
df2 = df1.reset_index(drop=False)
# print(df2)
'''
      A    B    C    D
0    A0   B0   C0   D0
1    A1   B1   C1   D1
2    A2   B2   C2   D2
3    A3   B3   C3   D3
4    A4   B4   C4   D4
5    A5   B5   C5   D5
6    A6   B6   C6   D6
7    A7   B7   C7   D7
8    A8   B8   C8   D8
9    A9   B9   C9   D9
10  A10  B10  C10  D10
11  A11  B11  C11  D11
'''
# drop=True
df3=df1.reset_index(drop=True)
# print(df3)
'''
      B    C    D
0    B0   C0   D0
1    B1   C1   D1
2    B2   C2   D2
3    B3   C3   D3
4    B4   C4   D4
5    B5   C5   D5
6    B6   C6   D6
7    B7   C7   D7
8    B8   C8   D8
9    B9   C9   D9
10  B10  C10  D10
11  B11  C11  D11
'''
df4=df.reset_index(drop=False)
# print(df4)
'''
    index    A    B    C    D
0       0   A0   B0   C0   D0
1       1   A1   B1   C1   D1
2       2   A2   B2   C2   D2
3       3   A3   B3   C3   D3
4       4   A4   B4   C4   D4
5       5   A5   B5   C5   D5
6       6   A6   B6   C6   D6
7       7   A7   B7   C7   D7
8       8   A8   B8   C8   D8
9       9   A9   B9   C9   D9
10     10  A10  B10  C10  D10
11     11  A11  B11  C11  D11
'''
df5=df.reset_index(drop=True)
print(df5)
'''
      A    B    C    D
0    A0   B0   C0   D0
1    A1   B1   C1   D1
2    A2   B2   C2   D2
3    A3   B3   C3   D3
4    A4   B4   C4   D4
5    A5   B5   C5   D5
6    A6   B6   C6   D6
7    A7   B7   C7   D7
8    A8   B8   C8   D8
9    A9   B9   C9   D9
10  A10  B10  C10  D10
11  A11  B11  C11  D11
'''

添加多个字段的index

demo级别的代码

#!/usr/bin/python3
# -*- coding: utf-8 -*-
# @Time    : 2019-06-06 13:28
# @Author  : LiYahui
# @Description : reset_index_demo2
import pandas as pd

data = {'a': ['bar', 'bar', 'foo', 'foo'],
        'b': ['one', 'two', 'one', 'two'],
        'c': ['z', 'x', 'y', 'w'],
        'd': [1.0, 2.0, 3.0, 4.0]}
df = pd.DataFrame(data)
# print(df)
'''
     a    b  c    d
0  bar  one  z  1.0
1  bar  two  x  2.0
2  foo  one  y  3.0
3  foo  two  w  4.0
'''
df1 = df.set_index(['a', 'b'])
# print(df1)
'''
         c    d
a   b          
bar one  z  1.0
    two  x  2.0
foo one  y  3.0
    two  w  4.0
'''
df2 = df1.reset_index()
# print(df2)
'''
     a    b  c    d
0  bar  one  z  1.0
1  bar  two  x  2.0
2  foo  one  y  3.0
3  foo  two  w  4.0
'''
df3 = df1.reset_index(['a', 'b'])
print(df3)
'''
     a    b  c    d
0  bar  one  z  1.0
1  bar  two  x  2.0
2  foo  one  y  3.0
3  foo  two  w  4.0
'''
df4 = df1.reset_index('a')
# print(df4)
'''
       a  c    d
b               
one  bar  z  1.0
two  bar  x  2.0
one  foo  y  3.0
two  foo  w  4.0
'''
df5=df1.reset_index('b')
print(df5)
'''
       b  c    d
a               
bar  one  z  1.0
bar  two  x  2.0
foo  one  y  3.0
foo  two  w  4.0
'''
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,544评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,430评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,764评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,193评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,216评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,182评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,063评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,917评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,329评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,543评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,722评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,425评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,019评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,671评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,825评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,729评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,614评论 2 353

推荐阅读更多精彩内容