17 | 高性能缓存架构?

单纯依靠存储系统的性能提升不够的,典型的场景有:

需要经过复杂运算后得出的数据,存储系统无能为力

例如,一个论坛需要在首页展示当前有多少用户同时在线,如果使用 MySQL 来存储当前用户状态,则每次获取这个总数都要“count(*)”大量数据,这样的操作无论怎么优化 MySQL,性能都不会太高。如果要实时展示用户同时在线数,则 MySQL 性能无法支撑。

读多写少的数据,存储系统有心无力

绝大部分在线业务都是读多写少。例如,微博、淘宝、微信这类互联网业务,读业务占了整体业务量的 90% 以上。以微博为例:一个明星发一条微博,可能几千万人来浏览。如果使用 MySQL 来存储微博,用户写微博只有一条 insert 语句,但每个用户浏览时都要 select 一次,即使有索引,几千万条 select 语句对 MySQL 数据库的压力也会非常大。

缓存就是为了弥补存储系统在这些复杂业务场景下的不足,其基本原理是将可能重复使用的数据放到内存中,一次生成、多次使用,避免每次使用都去访问存储系统。

缓存能够带来性能的大幅提升,以 Memcache 为例,单台 Memcache 服务器简单的 key-value 查询能够达到 TPS 50000 以上,其基本的架构是:

http://pic001.cnblogs.com/img/dudu/200809/2008092816494460.png

缓存虽然能够大大减轻存储系统的压力,但同时也给架构引入了更多复杂性。架构设计时如果没有针对缓存的复杂性进行处理,某些场景下甚至会导致整个系统崩溃。今天,我来逐一分析缓存的架构设计要点。

缓存穿透

缓存穿透是指缓存没有发挥作用,业务系统虽然去缓存查询数据,但缓存中没有数据,业务系统需要再次去存储系统查询数据。通常情况下有两种情况:

1. 存储数据不存在

第一种情况是被访问的数据确实不存在。一般情况下,如果存储系统中没有某个数据,则不会在缓存中存储相应的数据,这样就导致用户查询的时候,在缓存中找不到对应的数据,每次都要去存储系统中再查询一遍,然后返回数据不存在。缓存在这个场景中并没有起到分担存储系统访问压力的作用。

通常情况下,业务上读取不存在的数据的请求量并不会太大,但如果出现一些异常情况,例如被黑客攻击,故意大量访问某些读取不存在数据的业务,有可能会将存储系统拖垮。

这种情况的解决办法比较简单,如果查询存储系统的数据没有找到,则直接设置一个默认值(可以是空值,也可以是具体的值)存到缓存中,这样第二次读取缓存时就会获取到默认值,而不会继续访问存储系统。

2. 缓存数据生成耗费大量时间或者资源

第二种情况是存储系统中存在数据,但生成缓存数据需要耗费较长时间或者耗费大量资源。如果刚好在业务访问的时候缓存失效了,那么也会出现缓存没有发挥作用,访问压力全部集中在存储系统上的情况。

典型的就是电商的商品分页,假设我们在某个电商平台上选择“手机”这个类别查看,由于数据巨大,不能把所有数据都缓存起来,只能按照分页来进行缓存,由于难以预测用户到底会访问哪些分页,因此业务上最简单的就是每次点击分页的时候按分页计算和生成缓存。通常情况下这样实现是基本满足要求的,但是如果被竞争对手用爬虫来遍历的时候,系统性能就可能出现问题。

具体的场景有:

分页缓存的有效期设置为 1 天,因为设置太长时间的话,缓存不能反应真实的数据。

通常情况下,用户不会从第 1 页到最后 1 页全部看完,一般用户访问集中在前 10 页,因此第 10 页以后的缓存过期失效的可能性很大。

竞争对手每周来爬取数据,爬虫会将所有分类的所有数据全部遍历,从第 1 页到最后 1 页全部都会读取,此时很多分页缓存可能都失效了。

由于很多分页都没有缓存数据,从数据库中生成缓存数据又非常耗费性能(order by limit 操作),因此爬虫会将整个数据库全部拖慢

这种情况并没有太好的解决方案,因为爬虫会遍历所有的数据,而且什么时候来爬取也是不确定的,可能是每天都来,也可能是每周,也可能是一个月来一次,我们也不可能为了应对爬虫而将所有数据永久缓存。通常的应对方案要么就是识别爬虫然后禁止访问,但这可能会影响 SEO 和推广;要么就是做好监控,发现问题后及时处理,因为爬虫不是攻击,不会进行暴力破坏,对系统的影响是逐步的,监控发现问题后有时间进行处理。

缓存雪崩

缓存雪崩是指当缓存失效(过期)后引起系统性能急剧下降的情况。当缓存过期被清除后,业务系统需要重新生成缓存,因此需要再次访问存储系统,再次进行运算,这个处理步骤耗时几十毫秒甚至上百毫秒。而对于一个高并发的业务系统来说,几百毫秒内可能会接到几百上千个请求。由于旧的缓存已经被清除,新的缓存还未生成,并且处理这些请求的线程都不知道另外有一个线程正在生成缓存,因此所有的请求都会去重新生成缓存,都会去访问存储系统,从而对存储系统造成巨大的性能压力。这些压力又会拖慢整个系统,严重的会造成数据库宕机,从而形成一系列连锁反应,造成整个系统崩溃。

缓存雪崩的常见解决方法有两种:更新锁机制后台更新机制

1. 更新锁

对缓存更新操作进行加锁保护,保证只有一个线程能够进行缓存更新,未能获取更新锁的线程要么等待锁释放后重新读取缓存,要么就返回空值或者默认值

对于采用分布式集群的业务系统,由于存在几十上百台服务器,即使单台服务器只有一个线程更新缓存,但几十上百台服务器一起算下来也会有几十上百个线程同时来更新缓存,同样存在雪崩的问题。因此分布式集群的业务系统要实现更新锁机制,需要用到分布式锁,如 ZooKeeper

2. 后台更新

由后台线程来更新缓存,而不是由业务线程来更新缓存,缓存本身的有效期设置为永久,后台线程定时更新缓存。

后台定时机制需要考虑一种特殊的场景,当缓存系统内存不够时,会“踢掉”一些缓存数据,从缓存被“踢掉”到下一次定时更新缓存的这段时间内,业务线程读取缓存返回空值,而业务线程本身又不会去更新缓存,因此业务上看到的现象就是数据丢了。解决的方式有两种:

后台线程除了定时更新缓存,还要频繁地去读取缓存(例如,1 秒或者 100 毫秒读取一次),如果发现缓存被“踢了”就立刻更新缓存,这种方式实现简单,但读取时间间隔不能设置太长,因为如果缓存被踢了,缓存读取间隔时间又太长,这段时间内业务访问都拿不到真正的数据而是一个空的缓存值,用户体验一般。

业务线程发现缓存失效后,通过消息队列发送一条消息通知后台线程更新缓存。可能会出现多个业务线程都发送了缓存更新消息,但其实对后台线程没有影响,后台线程收到消息后更新缓存前可以判断缓存是否存在,存在就不执行更新操作。这种方式实现依赖消息队列,复杂度会高一些,但缓存更新更及时,用户体验更好

后台更新既适应单机多线程的场景,也适合分布式集群的场景,相比更新锁机制要简单一些。

后台更新机制还适合业务刚上线的时候进行缓存预热。缓存预热指系统上线后,将相关的缓存数据直接加载到缓存系统,而不是等待用户访问才来触发缓存加载。

缓存热点

虽然缓存系统本身的性能比较高,但对于一些特别热点的数据,如果大部分甚至所有的业务请求都命中同一份缓存数据,则这份数据所在的缓存服务器的压力也很大。例如,某明星微博发布“我们”来宣告恋爱了,短时间内上千万的用户都会来围观。

缓存热点的解决方案就是复制多份缓存副本,将请求分散到多个缓存服务器上,减轻缓存热点导致的单台缓存服务器压力。以微博为例,对于粉丝数超过 100 万的明星,每条微博都可以生成 100 份缓存,缓存的数据是一样的,通过在缓存的 key 里面加上编号进行区分,每次读缓存时都随机读取其中某份缓存。

缓存副本设计有一个细节需要注意,就是不同的缓存副本不要设置统一的过期时间,否则就会出现所有缓存副本同时生成同时失效的情况,从而引发缓存雪崩效应。正确的做法是设定一个过期时间范围,不同的缓存副本的过期时间是指定范围内的随机值。

实现方式

由于缓存的各种访问策略和存储的访问策略是相关的,因此上面的各种缓存设计方案通常情况下都是集成在存储访问方案中,可以采用“程序代码实现”的中间层方式,也可以采用独立的中间件来实现。

小结

你所在的业务发生过哪些因为缓存导致的线上问题?采取了什么样的解决方案?效果如何?

评论1

缓存雪崩问题,我们采取了双key策略:要缓存的key过期时间是t,key1没有过期时间。每次缓存读取不到key时就返回key1的内容,然后触发一个事件。这个事件会同时更新key和key1。

评论2

讲一个头两天发生的事情,我们的一个业务背后是es做db,之前是通过redis做缓存,缓存一段时间后失效再从es读取,是业务访问加载缓存的方式。有一天线上es集群机器单台出现问题,返回慢,由于分布式的缘故,渐渐拖满了所有请求,缓存失效来查询es发生了超时,加载失败,于是下次访问还是直接访问es。最终缓存全部失效,qps翻了好多倍,直接雪崩,es集群彻底没有响应了。。。之后我们只好先下线这个缓存加载功能,让集群活过来,最终改造缓存加载方式,用后台进程去更新缓存,而不用业务访问加载

评论3?

线上遇到的一个错误:业务查询的结果序列化后放到redis,下次从redis取出来时报错。原来是结果类虽然实现了Serializable接口,但是没有重写serialVersionUID,导致不能成功反序列化。

评论4?

热点数据存在相当的突发性,临时的扩容似乎也来不及,能否从缓存架构角度如何避免类似微博宕机的事件?

1. 限流

2. 容器化+动态化?

3. 业务降级,例如限制评论

评论5

数据库与缓存不一致

1. 同步刷新缓存:当更新了某些信息后,立刻让缓存失效。

这种做法的优点是用户体验好,缺点是修改一个数据可能需要让很多缓存失效

2. 适当容忍不一致:例如某东的商品就是这样,我查询的时候显示有货,下单的时候提示我没货了

3. 关键信息不缓存:库存,价格等不缓存,因为这类信息查询简单,效率高,关系数据库查询性能也很高

评论6?

好的缓存方案应该从这几个方面入手设计:

1.什么数据应该缓存

2.什么时机触发缓存和以及触发方式是什么

3.缓存的层次和粒度( 网关缓存如 nginx,本地缓存如单机文件,分布式缓存如redis cluster,进程内缓存如全局变量)

4.缓存的命名规则和失效规则

5.缓存的监控指标和故障应对方案

6.可视化缓存数据如 redis 具体 key 内容和大小

评论7

为什么不用Mysql缓存?

1. mysql第一种缓存叫sql语句结果缓存,但条件比较苛刻,程序员不可控,我们的dba线上都关闭这个功能,具体实现可以查一下

2. mysql第二种缓存是innodb buffer pool,缓存的是磁盘上的分页数据不是sql的查询结果,sql的执行过程省不了。而mc,redis这些实际上都是缓存sql的结果,两种缓存方式,性能差很远

因此,可控性,性能是数据库缓存和独立缓存的主要区别

评论8

1个问题:关于后台更新,既然缓存服务器内存不足,需要剔除数据,那么后台更新再次触发查询,是否又会导致其他一些缓存数据被剔除,这感觉像是陷入一个循环了。所以加内存才是根本解决方式

1个思路:我们之前的web项目,对于缓存热点数据,为了减少服务器的压力,在客户端引入了缓存:CDN加local storage,感觉对服务器端压力分散还是很有效果的。分级缓存策略

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,504评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,434评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,089评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,378评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,472评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,506评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,519评论 3 413
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,292评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,738评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,022评论 2 329
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,194评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,873评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,536评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,162评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,413评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,075评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,080评论 2 352

推荐阅读更多精彩内容