1. 简介
上一步获取到差异基因共得到246个差异基因,相比对照组,上调77个基因,下调169个基因。这些差异基因有些多,后续想要进一步针对性研究,有很多方法可以筛选。这里是利用在文献中查找感兴趣的相关基因,然后和获取的差异基因取交集,筛选出更有针对性的候选基因。
2. 数据信息
- DEG.csv 上一步筛选出的差异基因表格
- NRGs.csv 文献中查到的相关基因表格(中性粒细胞相关基因 NRG,38个)
3. 思路
- 利用 R 包 “ggvenn” 绘制韦恩图,可视化两个基因列表取交集的结果。
- 利用 R 自带的 “intersect()” 对两个基因列表取交集获得候选基因。
4. 代码
library(ggvenn)
library(ggplot2)
##---- 1.韦恩图 ----
NRGs <- read.csv("NRGs.csv")
DEG_ch = subset(DEG, DEG$change != "stable")$Symbol
Venn_groups <- list( DEGs = DEG_ch, NRGs = NRGs[[1]] )
venn_plot <- ggvenn(
Venn_groups,
show_percentage = TRUE,
digits = 1,
fill_color = c("red", "blue"),
stroke_color = "black",
stroke_size = 1,
set_name_size = 0,
text_size = 5
) +
labs(
title = "DEGs vs NRGs Venn Diagram",
caption = "DEGs NRGs"
) +
theme(
plot.title = element_text(hjust = 0.5, size = 11, face = "bold"),
plot.caption = element_text(hjust = 0.5, size = 10,
margin = margin(t = 10)),
plot.margin = margin(0.1, 0.1, 0.3, 0.1, "cm")
)
ggsave(
"venn_deg_nrg.png",
plot = venn_plot,
width = 8,
height = 6,
dpi = 300,
bg = "white"
)
ggsave(
"venn_deg_nrg.pdf",
plot = venn_plot,
width = 8,
height = 6,
device = "pdf",
bg = "white"
)
##---- 2. relv基因 -----
Candidate_names <- intersect(DEG_ch,NRGs[[1]])
Candidate <- DEG[DEG$Symbol %in% Candidate_names, ]
Candidate_names_df = data.frame('Candidate_names' = Candidate_names)
##---- 3.save -----
write.csv(Candidate_names_df, file = "Candidate_names.csv", row.names = FALSE)
5. 结果展示
image.png