tensorflow的数据输入

tensorflow有两种数据输入方法,比较简单的一种是使用feed_dict,这种方法在画graph的时候使用placeholder来站位,在真正run的时候通过feed字典把真实的输入传进去。比较简单不再介绍。

比较恼火的是第二种方法,直接从文件中读取数据(其实第一种也可以我们自己从文件中读出来之后使用feed_dict传进去,但方法二tf提供很完善的一套类和函数形成一个类似pipeline一样的读取线):
1.使用tf.train.string_input_producer函数把我们需要的全部文件打包为一个tf内部的queue类型,之后tf开文件就从这个queue中取目录了,要注意一点的是这个函数的shuffle参数默认是True,也就是你传给他文件顺序是1234,但是到时候读就不一定了,我一开始每次跑训练第一次迭代的样本都不一样,还纳闷了好久,就是这个原因。

files_in = ["./data/data_batch%d.bin" % i for i in range(1, 6)]
files = tf.train.string_input_producer(files_in)

2.搞一个reader,不同reader对应不同的文件结构,比如度bin文件tf.FixedLengthRecordReader就比较好,因为每次读等长的一段数据。如果要读什么别的结构也有相应的reader。

reader = tf.FixedLengthRecordReader(record_bytes=1+32*32*3)

3.用reader的read方法,这个方法需要一个IO类型的参数,就是我们上边string_input_producer输出的那个queue了,reader从这个queue中取一个文件目录,然后打开它经行一次读取,reader的返回是一个tensor(这一点很重要,我们现在写的这些读取代码并不是真的在读数据,还是在画graph,和定义神经网络是一样的,这时候的操作在run之前都不会执行,这个返回的tensor也没有值,他仅仅代表graph中的一个结点)。

key, value = reader.read(files)

4.对这个tensor做些数据与处理,比如CIFAR1-10中label和image数据是糅在一起的,这里用slice把他们切开,切成两个tensor(注意这个两个tensor是对应的,一个image对一个label,对叉了后便训练就完了),然后对image的tensor做data augmentation。

data = tf.decode_raw(value, tf.uint8)
label = tf.cast(tf.slice(data, [0], [1]), tf.int64)
raw_image = tf.reshape(tf.slice(data, [1], [32*32*3]), [3, 32, 32])
image = tf.cast(tf.transpose(raw_image, [1, 2, 0]), tf.float32)

lr_image = tf.image.random_flip_left_right(image)
br_image = tf.image.random_brightness(lr_image, max_delta=63)
rc_image = tf.image.random_contrast(br_image, lower=0.2, upper=1.8)

std_image = tf.image.per_image_standardization(rc_image)

5.这时候可以发现,这个tensor代表的是一个样本([高管道]),但是训练网络的时候的输入一般都是一推样本([样本数宽*管道]),我们就要用tf.train.batch或者tf.train.shuffle_batch这个函数把一个一个小样本的tensor打包成一个高一维度的样本batch,这些函数的输入是单个样本,输出就是4D的样本batch了,其内部原理似乎是创建了一个queue,然后不断调用你的单样本tensor获得样本,直到queue里边有足够的样本,然后一次返回一堆样本,组成样本batch。

images, labels = tf.train.batch([std_image, label],
                           batch_size=100,
                           num_threads=16,
                           capacity=int(50000* 0.4 + 3 * batch_size))

5.事实上一直到上一部的images这个tensor,都还没有真实的数据在里边,我们必须用Session run一下这个4D的tensor,才会真的有数据出来。这个原理就和我们定义好的神经网络run一下出结果一样,你一run这个4D tensor,他就会顺着自己的operator找自己依赖的其他tensor,一路最后找到最开始reader那里。

除了上边讲的原理,其中还要注意几点
1.tf.train.start_queue_runners(sess=sess)这一步一定要运行,且其位置要在定义好读取graph之后,在真正run之前,其作用是把queue里边的内容初始化,不跑这句一开始string_input_producer那里就没用,整个读取流水线都没用了。

training_images = tf.train.batch(XXXXXXXXXXXXXXX)
tf.train.start_queue_runners(sess=self.sess)
real_images = sess.run(training_images)

2.image和label一定要一起run,要记清楚我们的image和label是在一张graph里边的,跑一次那个graph,这两个tensor都会出结果,且同一次跑出来的image和label才是对应的,如果你run两次,第一次为了拿image第二次为了拿label,那整个就叉了,因为第一次跑出来第0到100号image和0到100号label,第二次跑出来第100到200的image和第100到200的label,你拿到了0100的image和100200的label,整个样本分类全不对,最后网络肯定跑不出结果。

training_images, training_labels = read_image()
tf.train.start_queue_runners(sess=self.sess)
real_images = sess.run(training_images) # 读出来是真的图片,但是和label对不上
real_labels = sess.run(training_labels) # 读出来是真的label,但是和image对不上

# 正确调用方法,通过跑一次graph,将成套的label和image读出来
real_images, real_labels = sess.run([training_images, training_labels])

因为不懂这个道理的up主跑了一下午正确率还是10%。。。。(10类别分类10%正确率不就是乱猜吗)

原文:【tensorflow的数据输入】

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,142评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,298评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,068评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,081评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,099评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,071评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,990评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,832评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,274评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,488评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,649评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,378评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,979评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,625评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,643评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,545评论 2 352

推荐阅读更多精彩内容