参考资料:
阿里云开发者社区 AI项目
极客时间:数据分析实战45讲
一、介绍
决策树是一种常见的分类模型,在金融分控、医疗辅助诊断等诸多行业具有较为广泛的应用。决策树的核心思想是基于树结构对数据进行划分,这种思想是人类处理问题时的本能方法。
决策树的主要优点:
具有很好的解释性,模型可以生成可以理解的规则。
可以发现特征的重要程度。
模型的计算复杂度较低。
决策树的主要缺点:
模型容易过拟合,需要采用减枝技术处理。
不能很好利用连续型特征。
预测能力有限,无法达到其他强监督模型效果。
方差较高,数据分布的轻微改变很容易造成树结构完全不同。
二、理论
我们在做决策树的时候,会经历两个阶段:构造和剪枝
构造
构造的过程就是选择什么属性作为节点的过程,那么在构造过程中,会存在三种节点:
- 根节点:就是树的最顶端,最开始的那个节点;
- 内部节点:就是树中间的那些节点;
- 叶节点:就是树最底部的节点,也就是决策结果。
剪枝
为了防止“过拟合”(Overfitting)现象的发生
欠拟合,和过拟合就好比是下面这张图中的第一个和第三个情况一样,训练的结果“太好“,反而在实际应用过程中会导致分类错误。
造成过拟合的原因之一就是因为训练集中样本量较小。如果决策树选择的属性过多,构造出来的决策树一定能够“完美”地把训练集中的样本分类,但是这样就会把训练集中一些数据的特点当成所有数据的特点,但这个特点不一定是全部数据的特点,这就使得这个决策树在真实的数据分类中出现错误,也就是模型的“泛化能力”差。
剪枝可以分为“预剪枝”(Pre-Pruning)和“后剪枝”(Post-Pruning)
预剪枝是在决策树构造时就进行剪枝。方法是在构造的过程中对节点进行评估,如果对某个节点进行划分,在验证集中不能带来准确性的提升,那么对这个节点进行划分就没有意义,这时就会把当前节点作为叶节点,不对其进行划分。
后剪枝就是在生成决策树之后再进行剪枝,通常会从决策树的叶节点开始,逐层向上对每个节点进行评估。如果剪掉这个节点子树,与保留该节点子树在分类准确性上差别不大,或者剪掉该节点子树,能在验证集中带来准确性的提升,那么就可以把该节点子树进行剪枝。方法是:用这个节点子树的叶子节点来替代该节点,类标记为这个节点子树中最频繁的那个类。
纯度
决策树的构造过程理解成为寻找纯净划分的过程。数学上,我们可以用纯度来表示,纯度换一种方式来解释就是让目标变量的分歧最小
信息熵
信息熵越大,纯度越低。当集合中的所有样本均匀混合时,信息熵最大,纯度最低。
在构造决策树的时候,会基于纯度来构建。而经典的 “不纯度”的指标有三种,分别是信息增益(ID3 算法)、信息增益率(C4.5 算法)以及基尼指数(Cart 算法)
ID3 算法
ID3 算法计算的是信息增益,信息增益指的就是划分可以带来纯度的提高,信息熵的下降。
它的计算公式,是父亲节点的信息熵减去所有子节点的信息熵。
在计算的过程中,我们会计算每个子节点的归一化信息熵,即按照每个子节点在父节点中出现的概率,来计算这些子节点的信息熵。
优点:
算法规则相对简单,可解释性强
缺点:
ID3 算法倾向于选择取值比较多的属性。有些属性可能对分类任务没有太大作用,但是他们仍然可能会被选为最优属性。这种缺陷不是每次都会发生,只是存在一定的概率
对噪声敏感。训练数据如果有少量错误,可能会产生决策树分类错误
C4.5 算法
信息增益率
ID3 在计算的时候,倾向于选择取值多的属性。
为了避免这个问题,C4.5 采用信息增益率的方式来选择属性。信息增益率 = 信息增益 / 属性熵
当属性有很多值的时候,相当于被划分成了许多份,虽然信息增益变大了,但是对于 C4.5 来说,属性熵也会变大,所以整体的信息增益率并不大悲观剪枝
ID3 构造决策树的时候,容易产生过拟合的情况。在 C4.5 中,会在决策树构造之后采用悲观剪枝(PEP),这样可以提升决策树的泛化能力。悲观剪枝是后剪枝技术中的一种,通过递归估算每个内部节点的分类错误率,比较剪枝前后这个节点的分类错误率来决定是否对其进行剪枝。这种剪枝方法不再需要一个单独的测试数据集。离散化处理连续属性
C4.5 可以处理连续属性的情况,对连续的属性进行离散化的处理。
C4.5 选择具有最高信息增益的划分所对应的阈值。处理缺失值
针对数据集不完整的情况,C4.5依然可以计算信息增益,并对属性进行选择。
优点:
在 ID3 的基础上,用信息增益率代替了信息增益,解决了噪声敏感的问题,并且可以对构造树进行剪枝、处理连续数值以及数值缺失等情况,
缺点:
C4.5 需要对数据集进行多次扫描,算法效率相对较低。
三、Demo实践
Step1: 库函数导入
## 基础函数库
import numpy as np
## 导入画图库
import matplotlib.pyplot as plt
import seaborn as sns
## 导入决策树模型函数
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
Step2: 训练模型
##Demo演示LogisticRegression分类
## 构造数据集
x_fearures = np.array([[-1, -2], [-2, -1], [-3, -2], [1, 3], [2, 1], [3, 2]])
y_label = np.array([0, 1, 0, 1, 0, 1])
## 调用决策树回归模型
tree_clf = DecisionTreeClassifier()
## 调用决策树模型拟合构造的数据集
tree_clf = tree_clf.fit(x_fearures, y_label)
Step3: 数据和模型可视化(需要用到graphviz可视化库)
## 可视化构造的数据样本点
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')
plt.show()
## 可视化决策树
import graphviz
dot_data = tree.export_graphviz(tree_clf, out_file=None)
graph = graphviz.Source(dot_data)
graph.render("pengunis")
'pengunis.pdf'
Step4:模型预测
## 创建新样本
x_fearures_new1 = np.array([[0, -1]])
x_fearures_new2 = np.array([[2, 1]])
## 在训练集和测试集上分布利用训练好的模型进行预测
y_label_new1_predict = tree_clf.predict(x_fearures_new1)
y_label_new2_predict = tree_clf.predict(x_fearures_new2)
print('The New point 1 predict class:\n',y_label_new1_predict)
print('The New point 2 predict class:\n',y_label_new2_predict)
The New point 1 predict class:
[1]
The New point 2 predict class:
[0]
四、基于企鹅数据集的决策树实战
#下载需要用到的数据集
!wget https://tianchi-media.oss-cn-beijing.aliyuncs.com/DSW/6tree/penguins_raw.csv
Step1:函数库导入
## 基础函数库
import numpy as np
import pandas as pd
## 绘图函数库
import matplotlib.pyplot as plt
import seaborn as sns
本次我们选择企鹅数据(palmerpenguins)进行方法的尝试训练,该数据集一共包含8个变量,其中7个特征变量,1个目标分类变量。共有150个样本,目标变量为 企鹅的类别 其都属于企鹅类的三个亚属,分别是(Adélie, Chinstrap and Gentoo)。包含的三种种企鹅的七个特征,分别是所在岛屿,嘴巴长度,嘴巴深度,脚蹼长度,身体体积,性别以及年龄。
变量 | 描述 |
---|---|
species | a factor denoting penguin species |
island | a factor denoting island in Palmer Archipelago, Antarctica |
bill_length_mm | a number denoting bill length |
bill_depth_mm | a number denoting bill depth |
flipper_length_mm | an integer denoting flipper length |
body_mass_g | an integer denoting body mass |
sex | a factor denoting penguin sex |
year | an integer denoting the study year |
Step2:数据读取/载入
## 我们利用Pandas自带的read_csv函数读取并转化为DataFrame格式
data = pd.read_csv('./penguins_raw.csv')
## 为了方便我们仅选取四个简单的特征,有兴趣的同学可以研究下其他特征的含义以及使用方法
data = data[['Species','Culmen Length (mm)','Culmen Depth (mm)',
'Flipper Length (mm)','Body Mass (g)']]
Step3:数据信息简单查看
## 利用.info()查看数据的整体信息
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 344 entries, 0 to 343
Data columns (total 5 columns):
Species 344 non-null object
Culmen Length (mm) 342 non-null float64
Culmen Depth (mm) 342 non-null float64
Flipper Length (mm) 342 non-null float64
Body Mass (g) 342 non-null float64
dtypes: float64(4), object(1)
memory usage: 13.6+ KB
## 进行简单的数据查看,我们可以利用 .head() 头部.tail()尾部
data.head()
这里我们发现数据集中存在NaN,一般的我们认为NaN在数据集中代表了缺失值,可能是数据采集或处理时产生的一种错误。这里我们采用-1将缺失值进行填补,还有其他例如“中位数填补、平均数填补”的缺失值处理方法有兴趣的同学也可以尝试。
data = data.fillna(-1)
data.tail()
## 其对应的类别标签为'Adelie Penguin', 'Gentoo penguin', 'Chinstrap penguin'三种不同企鹅的类别。
data['Species'].unique()
array(['Adelie Penguin (Pygoscelis adeliae)',
'Gentoo penguin (Pygoscelis papua)',
'Chinstrap penguin (Pygoscelis antarctica)'], dtype=object)
## 利用value_counts函数查看每个类别数量
pd.Series(data['Species']).value_counts()
Adelie Penguin (Pygoscelis adeliae) 152
Gentoo penguin (Pygoscelis papua) 124
Chinstrap penguin (Pygoscelis antarctica) 68
Name: Species, dtype: int64
## 对于特征进行一些统计描述
data.describe()
Step4:可视化描述
## 特征与标签组合的散点可视化
sns.pairplot(data=data, diag_kind='hist', hue= 'Species')
plt.show()
从上图可以发现,在2D情况下不同的特征组合对于不同类别的企鹅的散点分布,以及大概的区分能力。Culmen Lenth与其他特征的组合散点的重合较少,所以对于数据集的划分能力最好。
我们发现
'''为了方便我们将标签转化为数字
'Adelie Penguin (Pygoscelis adeliae)' ------0
'Gentoo penguin (Pygoscelis papua)' ------1
'Chinstrap penguin (Pygoscelis antarctica) ------2 '''
def trans(x):
if x == data['Species'].unique()[0]:
return 0
if x == data['Species'].unique()[1]:
return 1
if x == data['Species'].unique()[2]:
return 2
data['Species'] = data['Species'].apply(trans)
for col in data.columns:
if col != 'Species':
sns.boxplot(x='Species', y=col, saturation=0.5, palette='pastel', data=data)
plt.title(col)
plt.show()
利用箱型图我们也可以得到不同类别在不同特征上的分布差异情况。
# 选取其前三个特征绘制三维散点图
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure(figsize=(10,8))
ax = fig.add_subplot(111, projection='3d')
data_class0 = data[data['Species']==0].values
data_class1 = data[data['Species']==1].values
data_class2 = data[data['Species']==2].values
# 'setosa'(0), 'versicolor'(1), 'virginica'(2)
ax.scatter(data_class0[:,0], data_class0[:,1], data_class0[:,2],label=data['Species'].unique()[0])
ax.scatter(data_class1[:,0], data_class1[:,1], data_class1[:,2],label=data['Species'].unique()[1])
ax.scatter(data_class2[:,0], data_class2[:,1], data_class2[:,2],label=data['Species'].unique()[2])
plt.legend()
plt.show()
Step5:利用 决策树模型 在二分类上 进行训练和预测
## 为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。
from sklearn.model_selection import train_test_split
## 选择其类别为0和1的样本 (不包括类别为2的样本)
data_target_part = data[data['Species'].isin([0,1])][['Species']]
data_features_part = data[data['Species'].isin([0,1])][['Culmen Length (mm)','Culmen Depth (mm)',
'Flipper Length (mm)','Body Mass (g)']]
## 测试集大小为20%, 80%/20%分
x_train, x_test, y_train, y_test = train_test_split(data_features_part, data_target_part, test_size = 0.2, random_state = 2020)
## 从sklearn中导入决策树模型
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
## 定义 决策树模型
clf = DecisionTreeClassifier(criterion='entropy')
# 在训练集上训练决策树模型
clf.fit(x_train, y_train)
DecisionTreeClassifier(class_weight=None, criterion='entropy', max_depth=None,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, presort=False, random_state=None,
splitter='best')
## 可视化
import graphviz
dot_data = tree.export_graphviz(clf, out_file=None)
graph = graphviz.Source(dot_data)
graph.render("penguins")
'penguins.pdf'
## 在训练集和测试集上分布利用训练好的模型进行预测
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)
from sklearn import metrics
## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))
## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)
# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()
The accuracy of the Logistic Regression is: 0.9954545454545455
The accuracy of the Logistic Regression is: 1.0
The confusion matrix result:
[[31 0]
[ 0 25]]
我们可以发现其准确度为1,代表所有的样本都预测正确了。
Step6:利用 决策树模型 在三分类(多分类)上 进行训练和预测
## 测试集大小为20%, 80%/20%分
x_train, x_test, y_train, y_test = train_test_split(data[['Culmen Length (mm)','Culmen Depth (mm)',
'Flipper Length (mm)','Body Mass (g)']], data[['Species']], test_size = 0.2, random_state = 2020)
## 定义 决策树模型
clf = DecisionTreeClassifier()
# 在训练集上训练决策树模型
clf.fit(x_train, y_train)
DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, presort=False, random_state=None,
splitter='best')
## 在训练集和测试集上分布利用训练好的模型进行预测
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)
## 由于决策树模型是概率预测模型(前文介绍的 p = p(y=1|x,\theta)),所有我们可以利用 predict_proba 函数预测其概率
train_predict_proba = clf.predict_proba(x_train)
test_predict_proba = clf.predict_proba(x_test)
print('The test predict Probability of each class:\n',test_predict_proba)
## 其中第一列代表预测为0类的概率,第二列代表预测为1类的概率,第三列代表预测为2类的概率。
## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))
The test predict Probability of each class:
[[0. 0. 1.]
[0. 1. 0.]
[0. 1. 0.]
[1. 0. 0.]
[1. 0. 0.]
[0. 0. 1.]
[0. 0. 1.]
[1. 0. 0.]
[0. 1. 0.]
[1. 0. 0.]
[0. 1. 0.]
[0. 1. 0.]
[1. 0. 0.]
[0. 1. 0.]
[0. 1. 0.]
[0. 1. 0.]
[1. 0. 0.]
[0. 1. 0.]
[1. 0. 0.]
[1. 0. 0.]
[0. 0. 1.]
[1. 0. 0.]
[0. 0. 1.]
[1. 0. 0.]
[1. 0. 0.]
[1. 0. 0.]
[0. 1. 0.]
[1. 0. 0.]
[0. 1. 0.]
[1. 0. 0.]
[1. 0. 0.]
[0. 0. 1.]
[0. 0. 1.]
[0. 1. 0.]
[1. 0. 0.]
[0. 1. 0.]
[0. 1. 0.]
[1. 0. 0.]
[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]
[1. 0. 0.]
[0. 1. 0.]
[1. 0. 0.]
[1. 0. 0.]
[0. 0. 1.]
[0. 0. 1.]
[1. 0. 0.]
[1. 0. 0.]
[0. 1. 0.]
[1. 0. 0.]
[1. 0. 0.]
[0. 1. 0.]
[0. 1. 0.]
[0. 0. 1.]
[0. 0. 1.]
[0. 1. 0.]
[1. 0. 0.]
[1. 0. 0.]
[1. 0. 0.]
[0. 1. 0.]
[0. 1. 0.]
[0. 0. 1.]
[0. 0. 1.]
[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]
[1. 0. 0.]
[1. 0. 0.]]
The accuracy of the Logistic Regression is: 0.9963636363636363
The accuracy of the Logistic Regression is: 0.9565217391304348
## 查看混淆矩阵
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)
# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()
The confusion matrix result:
[[30 1 0]
[ 0 23 0]
[ 2 0 13]]
五、重要知识点
决策树构建的伪代码
输入: 训练集D={(,),(,),....,(,)};
特征集A={,,....,}
输出: 以node为根节点的一颗决策树
过程:函数TreeGenerate(,)
- 生成节点node
- 中样本全书属于同一类别 :
- ----将node标记为类叶节点;
- = 空集 OR D中样本在上的取值相同 :
- ----将node标记为叶节点,其类别标记为中样本数最多的类;
- 从 中选择最优划分属性 ;
- 的每一个值 :
- ----为node生成一个分支,令表示中在上取值为的样本子集;
- ---- 为空 :
- --------将分支节点标记为叶节点,其类别标记为中样本最多的类;
- ----:
- --------以 TreeGenerate(,{})为分支节点
决策树的构建过程是一个递归过程。函数存在三种返回状态:(1)当前节点包含的样本全部属于同一类别,无需继续划分;(2)当前属性集为空或者所有样本在某个属性上的取值相同,无法继续划分;(3)当前节点包含的样本集合为空,无法划分。
六、重要参数
criterion
Criterion这个参数正是用来决定模型特征选择的计算方法的。sklearn提供了两种选择:
输入”entropy“,使用信息熵(Entropy)
输入”gini“,使用基尼系数(Gini Impurity)
random_state & splitter
random_state用来设置分枝中的随机模式的参数,默认None,在高维度时随机性会表现更明显。splitter也是用来控制决策树中的随机选项的,有两种输入值,输入”best",决策树在分枝时虽然随机,但是还是会优先选择更重要的特征进行分枝(重要性可以通过属性feature_importances_查看),输入“random",决策树在分枝时会更加随机,树会因为含有更多的不必要信息而更深更大,并因这些不必要信息而降低对训练集的拟合。
max_depth
限制树的最大深度,超过设定深度的树枝全部剪掉。这是用得最广泛的剪枝参数,在高维度低样本量时非常有效。决策树多生长一层,对样本量的需求会增加一倍,所以限制树深度能够有效地限制过拟合。
min_samples_leaf
min_samples_leaf 限定,一个节点在分枝后的每个子节点都必须包含至少min_samples_leaf个训练样本,否则分枝就不会发生,或者,分枝会朝着满足每个子节点都包含min_samples_leaf个样本的方向去发生。一般搭配max_depth使用,在回归树中有神奇的效果,可以让模型变得更加平滑。这个参数的数量设置得太小会引起过拟合,设置得太大就会阻止模型学习数据。