感知哈希算法

感知哈希算法是一类哈希算法的总称,其作用在于生成每张图像的“指纹”(fingerprint)字符串,比较不同图像的指纹信息来判断图像的相似性。结果越接近图像越相似。感知哈希算法包括均值哈希(aHash)、感知哈希(pHash)和dHash(差异值哈希)。
aHash速度较快,但精确度较低;pHash则反其道而行之,精确度较高但速度较慢;dHash兼顾二者,精确度较高且速度较快。
在得到64位hash值后,使用汉明距离量化两张图像的相似性。汉明距离越大,图像的相似度越小,汉明距离越小,图像的相似度越大。

汉明距离是使用在数据传输差错控制编码里面的,汉明距离是一个概念,它表示两个(相同长度)字对应位不同的数量,我们以d(x,y)表示两个字x,y之间的汉明距离。对两个字符串进行异或运算,并统计结果为1的个数,那么这个数就是汉明距离。例如:
1011101与1001001之间的汉明距离是2。
2143896与2233796之间的汉明距离是3。
"toned"与"roses"之间的汉明距离是3。

aHash

a) 缩放图片:为了保留图像的结构,降低图像的信息量,需要去掉细节、大小和横纵比的差异,建议把图片统一缩放到8*8,共64个像素的图片;
b) 转化为灰度图:把缩放后的图片转化为256阶的灰度图;

灰度图相关算法(R = red, G = green, B = blue)
对于彩色转灰度,其基础的心理学公式为: Gray = R0.299 + G0.587 + B0.114,部分变种也很流行:
i. 浮点算法:Gray=R
0.3+G0.59+B0.11
ii. 整数方法:Gray=(R30+G59+B11)/100
iii. 移位方法:Gray =(R
76+G151+B28)>>8;
iv. 平均值法:Gray=(R+G+B)/3;
v. 仅取绿色:Gray=G;

c) 计算平均值: 计算进行灰度处理后图片的所有像素点的平均值;
d) 比较像素灰度值:遍历灰度图片每一个像素,如果大于平均值记录为1,否则为0;
e) 构造hash值:组合64个bit位生成hash值,顺序随意但前后保持一致性即可;
f) 对比指纹:计算两幅图片的指纹,计算汉明距离。

pHash

感知哈希算法可以获得更精确的结果,它采用的是DCT(离散余弦变换)来降低频率。
a) 缩小尺寸
为了简化了DCT的计算,pHash以小图片开始(建议图片大于8x8,32x32)。
b) 简化色彩
与aHash相同,需要将图片转化成灰度图像,进一步简化计算量(具体算法见aHash算法步骤)。
c) 计算DCT
DCT是把图片分解频率聚集和梯状形。这里以32x32的图片为例。

DCT变换的全称是离散余弦变换(Discrete Cosine Transform),主要用于将数据或图像的压缩,能够将空域的信号转换到频域上,具有良好的去相关性的性能。DCT变换本身是无损的,但是在图像编码等领域给接下来的量化、哈弗曼编码等创造了很好的条件,同时,由于DCT变换时对称的,所以,我们可以在量化编码后利用DCT反变换,在接收端恢复原始的图像信息。对原始图像进行离散余弦变换,变换后DCT系数能量主要集中在左上角,其余大部分系数接近于零,DCT具有适用于图像压缩的特性。将变换后的DCT系数进行门限操作,将小于一定值得系数归零,这就是图像压缩中的量化过程,然后进行逆DCT运算,可以得到压缩后的图像。
离散余弦变换的原理:
一维DCT变换:


一维DCT变换

其中,f(i)为原始的信号,F(u)是DCT变换后的系数,N为原始信号的点数,c(u)可以认为是一个补偿系数,可以使DCT变换矩阵为正交矩阵。
二维离散余弦变换的正变换公式为:


二维离散余弦变换

d) 缩小DCT
DCT的结果为32x32大小的矩阵,但只需保留左上角的8x8的矩阵,这部分呈现了图片中的最低频率。
e) 计算平均值
如同均值哈希一样,计算DCT的均值
f) 进一步减小DCT
根据8x8的DCT矩阵进行比较,大于等于DCT均值的设为”1”,小于DCT均值的设为“0”。图片的整体结构保持不变的情况下,hash结果值不变。
g) 构造hash值
组合64个bit位生成hash值,顺序随意但前后保持一致性即可。
h)对比指纹:计算两幅图片的指纹,计算汉明距离。

dHash

相比pHash,dHash的速度更快,相比aHash,dHash在效率几乎相同的情况下的效果要更好,它是基于渐变实现的。
a) 缩小图片:收缩至9*8的大小,它有72的像素点;
b) 转化为灰度图:把缩放后的图片转化为256阶的灰度图。(具体算法见aHash算法步骤);
c) 计算差异值:计算相邻像素间的差异值,这样每行9个像素之间产生了8个不同的差异,一共8行,则产生了64个差异值;
d) 比较差异值:如果前一个像素的颜色强度大于第二个像素,那么差异值就设置为“1”,如果不大于第二个像素,就设置“0”。
e) 构造hash值:组合64个bit位生成hash值,顺序随意但前后保持一致性即可。
f) 对比指纹:计算两幅图片的指纹,计算汉明距离。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352

推荐阅读更多精彩内容