为什么说除法是乘法的逆运算

为什么说除法是乘法的逆运算

  其实除法是乘法的逆运算与减法是加法的逆运算类似,不同之处在于:加法逆运算的表达是通过0,而乘法逆运算的表达是通过1, 我们来分析如何表示除法。

对于a∈Z,b∈Z,a÷b=ya=b×y

这个关系表明除法是乘法的逆运算,因

这个关系表明除法是乘法的逆运算,因为除法可以与乘法对应。通常在上式中,a称为被除数,b称为除数,y称为商

�1、若商为整数,那么命题“a是b的y倍”等价与命题“b的y倍是a”。通过上面的式子还可以看到,对于前一个命题,即“a是b的多少倍”这样的问题应当用除法;对于后一个命题,即“b的y倍是多少”这样的问题应当用乘法。因为理解除法比理解乘法要困难一些,因此在实际教学过程中,往往需要借助乘法来说明除法。 

�2、若商不是整数,比如5÷2就不能表示为整数,这就需要构建一种新的数,人们把这样的数称为有理数。这样,通过除法,可以把数的集合由整数集合扩充到有理数集合,通常用Q表示这个集合。人们把四则运算推广到有理数集合的同时,也把相应的运算法则扩充到有理数集合。但是,在推广过程中需要特别注意逆运算,对于逆运算,有些法则成立,有些法则不成立,比如:

分配律成立:(5+6)÷3=(5÷3)+(6÷3)

交换律不成立:5÷3≠3÷5

除法与倒数

倒数的定义方法如下:

对于b∈Z且不为0,满足b×y=1

的数,y称为b的倒数,表示1/b。与相反数类似,b与1/b互为倒数。进一步,对于任何a∈Z,用a/b表示a个1/b这样的数。通过这样的表示,就可以利用倒数把整数集合扩充到有理数集合,即把有理数集合表示为

    Q={a/b;a∈Z,b∈Z-{0}}

上面关于有理数集合的表示是具有一般性的:用大括号包括所有集合中的元素;分号前面表示的是集合中元素的形式;分号后面表示的是集合中元素的属性。其中符号b∈Z-{0}表示b可以是除去0以外的所有整数,这种表示也意味着“0不能为除数”

为什么会有这样的规定呢?

通过乘法的逆运算定义除法的模式是这样的

a÷b=ya=b×y(其中b为除数)

如果我们假设b=0,分析上面右边的乘法算式,可以有两种情况:一种情况是a≠0,那么无论y为任何数,上面右边的等式都不成立,因此乘法不成立,进而除法不成立;另一种情况是a=0,这样右边的等式可以表示为0=0×y,这时无论y是任何数,等式都成立,因此计算结果不唯一,进而除法不成立。综上所述,在除法运算中除数不能为0.

倒数与除法之间的关系:除以一个数等于乘以这个数的倒数。    a÷b=a×b分之一

在乘法运算过程中,人们通常会省略其中的乘法符号“×”,有时可以写成a÷b=a/b。虽然这种表示方法与分数是一致的,但从抽象的本意来说,分数与除法是有本质差异的。分数的本质是数而不是运算。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352

推荐阅读更多精彩内容

  • 第一章数和数的运算 一概念 (一)整数 1整数的意义 自然数和0都是整数。 2自然数 我们在数物体的时候,用来表示...
    meychang阅读 2,595评论 0 5
  • 第2章 基本语法 2.1 概述 基本句法和变量 语句 JavaScript程序的执行单位为行(line),也就是一...
    悟名先生阅读 4,145评论 0 13
  • 定点小数运算 来自:http://www.eepw.com.cn/article/17893.htm 在DSP世界...
    郝宇峰阅读 9,095评论 0 2
  • TF API数学计算tf...... :math(1)刚开始先给一个运行实例。tf是基于图(Graph)的计算系统...
    MachineLP阅读 3,459评论 0 1
  • 昨晚睡觉前定了计划,早起晨跑。按照惯例,我在睡前定了5点的闹钟。 闹钟响起的那一刻,我睁开了双眼。突然...
    众人笑我痴阅读 651评论 0 0