参考资料:极客时间《MySQL实战45讲》
1 基础架构
存储引擎层负责数据的存储和提取。其架构模式是插件式的,支持 InnoDB、MyISAM、Memory 等多个存储引擎。现在最常用的存储引擎是 InnoDB,它从 MySQL 5.5.5 版本开始成为了默认存储引擎。
1)连接器负责跟客户端建立连接、获取权限、维持和管理连接。建立连接的过程通常是比较复杂的,所以我建议你在使用中要尽量减少建立连接的动作,也就是尽量使用长连接。
show processlist 命令中看到的 Command 列显示为“Sleep”的这一行,就表示现在系统里面有一个空闲连接。客户端如果太长时间没动静,连接器就会自动将它断开。这个时间是由参数 wait_timeout 控制的,默认值是 8 小时。
但是全部使用长连接后,你可能会发现,有些时候 MySQL 占用内存涨得特别快,这是因为 MySQL 在执行过程中临时使用的内存是管理在连接对象里面的。这些资源会在连接断开的时候才释放。所以如果长连接累积下来,可能导致内存占用太大,被系统强行杀掉(OOM),从现象看就是 MySQL 异常重启了。
可以考虑以下两种方案。
-定期断开长连接。使用一段时间,或者程序里面判断执行过一个占用内存的大查询后,断开连接,之后要查询再重连。
-如果你用的是 MySQL 5.7 或更新版本,可以在每次执行一个比较大的操作后,通过执行 mysql_reset_connection 来重新初始化连接资源。这个过程不需要重连和重新做权限验证,但是会将连接恢复到刚刚创建完时的状态。
2 )查询缓存
之前执行过的语句及其结果可能会以 key-value 对的形式,被直接缓存在内存中。key 是查询的语句,value 是查询的结果。
大多数情况下我会建议你不要使用查询缓存,为什么呢?因为查询缓存往往弊大于利:查询缓存的失效非常频繁,只要有对一个表的更新,这个表上所有的查询缓存都会被清空。
除非你的业务就是有一张静态表,很长时间才会更新一次。比如,一个系统配置表,那这张表上的查询才适合使用查询缓存。
MySQL 也提供了这种“按需使用”的方式。你可以将参数 query_cache_type 设置成 DEMAND,这样对于默认的 SQL 语句都不使用查询缓存。而对于你确定要使用查询缓存的语句,可以用 SQL_CACHE 显式指定,像下面这个语句一样:
mysql> select SQL_CACHE * from T where ID=10;
3) 分析器
词法分析、语法分析
4 )优化器
优化器是在表里面有多个索引的时候,决定使用哪个索引;或者在一个语句有多表关联(join)的时候,决定各个表的连接顺序。
5 )执行器
先判断一下你对这个表 T 有没有执行查询的权限,如果没有,就会返回没有权限的错误
如果有权限,就打开表继续执行。打开表的时候,执行器就会根据表的引擎定义,去使用这个引擎提供的接口。
2 日志系统
-重要的日志模块:redo log
在 MySQL 里也有这个问题,如果每一次的更新操作都需要写进磁盘,然后磁盘也要找到对应的那条记录,然后再更新,整个过程 IO 成本、查找成本都很高。为了解决这个问题,MySQL 的设计者就用了 WAL 技术,全称是 Write-Ahead Logging,它的关键点就是先写日志,再写磁盘,也就是先写粉板,等不忙的时候再写账本。具体来说,当有一条记录需要更新的时候,InnoDB 引擎就会先把记录写到 redo log(粉板)里面,并更新内存,这个时候更新就算完成了。同时,InnoDB 引擎会在适当的时候,将这个操作记录更新到磁盘里面(数据库发生宕机、buffer pool缓存失效、redo log文件空间不够用或者到达上次checkpoint的点)
InnoDB 的 redo log 是固定大小的,比如可以配置为一组 4 个文件,每个文件的大小是 1GB,从头开始写,写到末尾就又回到开头循环写,如下面这个图所示。
write pos 是当前记录的位置,一边写一边后移,写到第 3 号文件末尾后就回到 0 号文件开头。checkpoint 是当前要擦除的位置,也是往后推移并且循环的,擦除记录前要把记录更新到数据文件。write pos 和 checkpoint 之间的是“粉板”上还空着的部分,可以用来记录新的操作。如果 write pos 追上 checkpoint,表示“粉板”满了,这时候不能再执行新的更新,得停下来先擦掉一些记录,把 checkpoint 推进一下。有了 redo log,InnoDB 就可以保证即使数据库发生异常重启,之前提交的记录都不会丢失,这个能力称为 crash-safe。
-重要的日志模块:binlog
redo log 是 InnoDB 引擎特有的日志,而 Server 层也有自己的日志,称为 binlog(归档日志)。
最开始 MySQL 里并没有 InnoDB 引擎。MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog 日志只能用于归档。而 InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统——也就是 redo log 来实现 crash-safe 能力。
redo log 是 InnoDB 引擎特有的;binlog 是 MySQL 的 Server 层实现的,所有引擎都可以使用。
redo log 是物理日志,记录的是“在某个数据页上做了什么修改”;binlog 是逻辑日志,记录的是这个语句的原始逻辑,比如“给 ID=2 这一行的 c 字段加 1 ”。
redo log 是循环写的,空间固定会用完;binlog 是可以追加写入的。“追加写”是指 binlog 文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。
mysql> create table T(ID int primary key, c int);
mysql> update T set c=c+1 where ID=2;
update 语句时的内部流程。
执行器先找引擎取 ID=2 这一行。ID 是主键,引擎直接用树搜索找到这一行。如果 ID=2 这一行所在的数据页本来就在内存中,就直接返回给执行器;否则,需要先从磁盘读入内存,然后再返回。执行器拿到引擎给的行数据,把这个值加上 1,比如原来是 N,现在就是 N+1,得到新的一行数据,再调用引擎接口写入这行新数据。引擎将这行新数据更新到内存中,同时将这个更新操作记录到 redo log 里面,此时 redo log 处于 prepare 状态。然后告知执行器执行完成了,随时可以提交事务。执行器生成这个操作的 binlog,并把 binlog 写入磁盘。执行器调用引擎的提交事务接口,引擎把刚刚写入的 redo log 改成提交(commit)状态,更新完成。
redo log 的写入拆成了两个步骤:prepare 和 commit,这就是"两阶段提交"。
为什么必须有“两阶段提交”呢?这是为了让两份日志之间的逻辑一致。这里不妨用反证法来进行解释。
1)先写 redo log 后写 binlog。假设在 redo log 写完,binlog 还没有写完的时候,MySQL 进程异常重启。由于我们前面说过的,redo log 写完之后,系统即使崩溃,仍然能够把数据恢复回来,所以恢复后这一行 c 的值是 1。但是由于 binlog 没写完就 crash 了,这时候 binlog 里面就没有记录这个语句。因此,之后备份日志的时候,存起来的 binlog 里面就没有这条语句。然后你会发现,如果需要用这个 binlog 来恢复临时库的话,由于这个语句的 binlog 丢失,这个临时库就会少了这一次更新,恢复出来的这一行 c 的值就是 0,与原库的值不同。
2)先写 binlog 后写 redo log。如果在 binlog 写完之后 crash,由于 redo log 还没写,崩溃恢复以后这个事务无效,所以这一行 c 的值是 0。但是 binlog 里面已经记录了“把 c 从 0 改成 1”这个日志。所以,在之后用 binlog 来恢复的时候就多了一个事务出来,恢复出来的这一行 c 的值就是 1,与原库的值不同。
可以看到如果不使用“两阶段提交”,那么数据库的状态就有可能和用它的日志恢复出来的库的状态不一致。
总结:
redo log 用于保证 crash-safe 能力。innodb_flush_log_at_trx_commit 这个参数设置成 1 的时候,表示每次事务的 redo log 都直接持久化到磁盘。这个参数我建议你设置成 1,这样可以保证 MySQL 异常重启之后数据不丢失。sync_binlog 这个参数设置成 1 的时候,表示每次事务的 binlog 都持久化到磁盘。这个参数我也建议你设置成 1,这样可以保证 MySQL 异常重启之后 binlog 不丢失。
3 事务隔离
MySQL 原生的 MyISAM 引擎就不支持事务,这也是 MyISAM 被 InnoDB 取代的重要原因之一。
当数据库上有多个事务同时执行的时候,就可能出现脏读(dirty read)、不可重复读(non-repeatable read)、幻读(phantom read)的问题,为了解决这些问题,就有了“隔离级别”的概念。
SQL 标准的事务隔离级别包括:读未提交(read uncommitted)、读提交(read committed,两次查询之间发生了update操作)、可重复读(repeatable read,两次查询之间发生了insert、delete操作)和串行化(serializable )。
-读未提交是指,一个事务还没提交时,它做的变更就能被别的事务看到。
-读提交是指,一个事务提交之后,它做的变更才会被其他事务看到。
-可重复读是指,一个事务执行过程中看到的数据,总是跟这个事务在启动时看到的数据是一致的。当然在可重复读隔离级别下,未提交变更对其他事务也是不可见的。
-串行化,顾名思义是对于同一行记录,“写”会加“写锁”,“读”会加“读锁”。当出现读写锁冲突的时候,后访问的事务必须等前一个事务执行完成,才能继续执行。
在实现上,数据库里面会创建一个视图,访问的时候以视图的逻辑结果为准。在“可重复读”隔离级别下,这个视图是在事务启动时创建的,整个事务存在期间都用这个视图。在“读提交”隔离级别下,这个视图是在每个 SQL 语句开始执行的时候创建的。这里需要注意的是,“读未提交”隔离级别下直接返回记录上的最新值,没有视图概念;而“串行化”隔离级别下直接用加锁的方式来避免并行访问。
事务隔离的实现
在实现上,数据库里面会创建一个视图,访问的时候以视图的逻辑结果为准。在“可重复读”隔离级别下,这个视图是在事务启动时创建的,整个事务存在期间都用这个视图。在“读提交”隔离级别下,这个视图是在每个 SQL 语句开始执行的时候创建的。这里需要注意的是,“读未提交”隔离级别下直接返回记录上的最新值,没有视图概念;而“串行化”隔离级别下直接用加锁的方式来避免并行访问。
假设一个值从 1 被按顺序改成了 2、3、4,在回滚日志(undo log)里面就会有类似下面的记录。
当前值是 4,但是在查询这条记录的时候,不同时刻启动的事务会有不同的 read-view。如图中看到的,在视图 A、B、C 里面,这一个记录的值分别是 1、2、4,同一条记录在系统中可以存在多个版本,就是数据库的多版本并发控制(MVCC)。对于 read-view A,要得到 1,就必须将当前值依次执行图中所有的回滚操作得到。
当系统里没有比这个回滚日志更早的 read-view 的时候,没有事务再需要用到这些回滚日志时,回滚日志会被删除
为什么建议你尽量不要使用长事务。长事务意味着系统里面会存在很老的事务视图。由于这些事务随时可能访问数据库里面的任何数据,所以这个事务提交之前,数据库里面它可能用到的回滚记录都必须保留,这就会导致大量占用存储空间。
在 MySQL 5.5 及以前的版本,回滚日志是跟数据字典一起放在 ibdata 文件里的,即使长事务最终提交,回滚段被清理,文件也不会变小。我见过数据只有 20GB,而回滚段有 200GB 的库。最终只好为了清理回滚段,重建整个库。
事务的启动方式:
-显式启动事务语句, begin 或 start transaction。配套的提交语句是 commit,回滚语句是 rollback。
-set autocommit=0,这个命令会将这个线程的自动提交关掉。意味着如果你只执行一个 select 语句,这个事务就启动了,而且并不会自动提交。这个事务持续存在直到你主动执行 commit 或 rollback 语句,或者断开连接。
因此,建议总是使用 set autocommit=1, 通过显式语句的方式来启动事务。
下面这个语句,用于查找持续时间超过 60s 的事务。
select * from information_schema.innodb_trx where TIME_TO_SEC(timediff(now(),trx_started))>60
4 索引
哈希表:适用于只有等值查询的场景,因为不是有序的,所以哈希索引做区间查询的速度是很慢的。
有序数组:在等值查询和范围查询场景中的性能就都非常优秀,但是往中间插入一个记录就必须得挪动后面所有的记录,成本太高。所以,有序数组索引只适用于静态存储引擎
二叉搜索树:二叉树是搜索效率最高的,但是索引不止存在内存中,还要写到磁盘上
多叉树、跳表、LSM 树
InnoDB 的索引模型
首先建表:
mysql> create table T(
id int primary key,
k int not null,
name varchar(16),
index (k))engine=InnoDB;
主键索引也被称为聚簇索引
非主键索引也被称为二级索引、普通索引
基于主键索引和普通索引的查询有什么区别?
如果语句是 select * from T where ID=500,即主键查询方式,则只需要搜索 ID 这棵 B+ 树;
如果语句是 select * from T where k=5,即普通索引查询方式,则需要先搜索 k 索引树,得到 ID 的值为 500,再到 ID 索引树搜索一次。这个过程称为回表。
索引维护
以上面这个图为例,如果插入新的行 ID 值为 700,则只需要在 R5 的记录后面插入一个新记录。如果新插入的 ID 值为 400,就相对麻烦了,需要逻辑上挪动后面的数据,空出位置。而更糟的情况是,如果 R5 所在的数据页已经满了,根据 B+ 树的算法,这时候需要申请一个新的数据页,然后挪动部分数据过去。这个过程称为页分裂。在这种情况下,性能自然会受影响。除了性能外,页分裂操作还影响数据页的利用率。原本放在一个页的数据,现在分到两个页中,整体空间利用率降低大约 50%。当然有分裂就有合并。当相邻两个页由于删除了数据,利用率很低之后,会将数据页做合并。合并的过程,可以认为是分裂过程的逆过程。
自增主键与自由业务主键的选择:
自增主键(一般是这么定义的: NOT NULL PRIMARY KEY AUTO_INCREMENT)
-性能:自增主键的插入数据模式中,每次插入一条新记录,都是追加操作,都不涉及到挪动其他记录,也不会触发叶子节点的分裂。
而自有业务逻辑的字段做主键,则往往不容易保证有序插入,这样写数据成本相对较高。
-存储空间:主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小。
所以,从性能和存储空间方面考量,自增主键往往是更合理的选择。KV 场景适合用自有业务字段直接做主键
5 索引
覆盖索引
由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段。
最左前缀原则
在建立联合索引的时候,如何安排索引内的字段顺序:这里我们的评估标准是,索引的复用能力。因为可以支持最左前缀,所以当已经有了 (a,b) 这个联合索引后,一般就不需要单独在 a 上建立索引了。因此,第一原则是,如果通过调整顺序,可以少维护一个索引,那么这个顺序往往就是需要优先考虑采用的。
索引下推
以市民表的联合索引(name, age)为例。如果现在有一个需求:检索出表中“名字第一个字是张,而且年龄是 10 岁的所有男孩”
mysql> select * from tuser where name like '张%' and age=10 and ismale=1;
这个语句在搜索索引树的时候,只能用 “张”,找到第一个满足条件的记录 ID3,然后只能从 ID3 开始一个个回表。到主键索引上找出数据行,再对比字段值(在 MySQL 5.6 之前)
MySQL 5.6 引入的索引下推优化(index condition pushdown), 可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。
为什么要重建索引:索引可能因为删除,或者页分裂等原因,导致数据页有空洞,重建索引的过程会创建一个新的索引,把数据按顺序插入,这样页面的利用率最高,也就是索引更紧凑、更省空间。不论是删除主键还是创建主键,都会将整个表重建。
alter table T engine=InnoDB 可以达到重建索引的效果
6 全局锁和表锁
1)全局锁的典型使用场景是,做全库逻辑备份。不加锁的话,备份系统备份的得到的库不是一个逻辑时间点,这个视图是逻辑不一致的。
官方自带的逻辑备份工具是 mysqldump。当 mysqldump 使用参数–single-transaction 的时候,导数据之前就会启动一个事务,来确保拿到一致性视图。而由于 MVCC 的支持,这个过程中数据是可以正常更新的。
一致性读是好,但前提是引擎要支持这个隔离级别。比如,对于 MyISAM 这种不支持事务的引擎,如果备份过程中有更新,总是只能取到最新的数据,那么就破坏了备份的一致性。这时,我们就需要使用 FTWRL 命令了。所以,single-transaction 方法只适用于所有的表使用事务引擎的库。如果有的表使用了不支持事务的引擎,那么备份就只能通过 FTWRL 方法。这往往是 DBA 要求业务开发人员使用 InnoDB 替代 MyISAM 的原因之一。
既然要全库只读,为什么不使用 set global readonly=true 的方式呢?
确实 readonly 方式也可以让全库进入只读状态,但我还是会建议你用 FTWRL 方式,主要有两个原因:
一是,在有些系统中,readonly 的值会被用来做其他逻辑,比如用来判断一个库是主库还是备库。因此,修改 global 变量的方式影响面更大,我不建议你使用。
二是,在异常处理机制上有差异。如果执行 FTWRL 命令之后由于客户端发生异常断开,那么 MySQL 会自动释放这个全局锁,整个库回到可以正常更新的状态。而将整个库设置为 readonly 之后,如果客户端发生异常,则数据库就会一直保持 readonly 状态,这样会导致整个库长时间处于不可写状态,风险较高。
2)MySQL 里面表级别的锁有两种:一种是表锁,一种是元数据锁(meta data lock,MDL)。
-表锁的语法是 lock tables … read/write。
举个例子, 如果在某个线程 A 中执行 lock tables t1 read, t2 write; 这个语句,则其他线程写 t1、读写 t2 的语句都会被阻塞。同时,线程 A 在执行 unlock tables 之前,也只能执行读 t1、读写 t2 的操作。连写 t1 都不允许,自然也不能访问其他表。
-另一类表级的锁是 MDL(metadata lock)。MDL 不需要显式使用,在访问一个表的时候会被自动加上。MDL 的作用是,保证读写的正确性。你可以想象一下,如果一个查询正在遍历一个表中的数据,而执行期间另一个线程对这个表结构做变更,删了一列,那么查询线程拿到的结果跟表结构对不上,肯定是不行的。
因此,在 MySQL 5.5 版本中引入了 MDL,当对一个表做增删改查操作的时候,加 MDL 读锁;当要对表做结构变更操作的时候,加 MDL 写锁。读锁之间不互斥,因此你可以有多个线程同时对一张表增删改查。读写锁之间、写锁之间是互斥的,用来保证变更表结构操作的安全性。因此,如果有两个线程要同时给一个表加字段,其中一个要等另一个执行完才能开始执行。
虽然 MDL 锁是系统默认会加的,但却是你不能忽略的一个机制。比如下面这个例子,我经常看到有人掉到这个坑里:给一个小表加个字段,导致整个库挂了。
我们可以看到 session A 先启动,这时候会对表 t 加一个 MDL 读锁。由于 session B 需要的也是 MDL 读锁,因此可以正常执行。之后 session C 会被 blocked,是因为 session A 的 MDL 读锁还没有释放,而 session C 需要 MDL 写锁,因此只能被阻塞。如果只有 session C 自己被阻塞还没什么关系,但是之后所有要在表 t 上新申请 MDL 读锁的请求也会被 session C 阻塞。前面我们说了,所有对表的增删改查操作都需要先申请 MDL 读锁,就都被锁住,等于这个表现在完全不可读写了。如果某个表上的查询语句频繁,而且客户端有重试机制,也就是说超时后会再起一个新 session 再请求的话,这个库的线程很快就会爆满。
那么如何安全地给小表加字段?
首先我们要解决长事务,事务不提交,就会一直占着 MDL 锁。在 MySQL 的 information_schema 库的 innodb_trx 表中,你可以查到当前执行中的事务。如果你要做 DDL 变更的表刚好有长事务在执行,要考虑先暂停 DDL,或者 kill 掉这个长事务。
select trx_mysql_thread_id from information_schema.innodb_trx where TIME_TO_SEC(timediff(now(),trx_started))>60;
Kill trx_mysql_thread_id;
但考虑一下这个场景。如果你要变更的表是一个热点表,虽然数据量不大,但是上面的请求很频繁,而你不得不加个字段,你该怎么做呢?这时候 kill 可能未必管用,因为新的请求马上就来了。比较理想的机制是,在 alter table 语句里面设定等待时间,如果在这个指定的等待时间里面能够拿到 MDL 写锁最好,拿不到也不要阻塞后面的业务语句,先放弃。之后开发人员或者 DBA 再通过重试命令重复这个过程。MariaDB 已经合并了 AliSQL 的这个功能,所以这两个开源分支目前都支持 DDL NOWAIT/WAIT n 这个语法。
ALTER TABLE tbl_name NOWAIT add column ...
ALTER TABLE tbl_name WAIT N add column ...
7 行锁
两阶段锁
事务 B 的 update 语句会被阻塞,直到事务 A 执行 commit 之后,事务 B 才能继续执行。事务 A 持有的两个记录的行锁,都是在 commit 的时候才释放的。
在 InnoDB 事务中,行锁是在需要的时候才加上的,但并不是不需要了就立刻释放,而是要等到事务结束时才释放。这个就是两阶段锁协议。
知道了这个设定,对我们使用事务有什么帮助呢?那就是,如果你的事务中需要锁多个行,要把最可能造成锁冲突、最可能影响并发度的锁尽量往后放。
假设你负责实现一个电影票在线交易业务,顾客 A 要在影院 B 购买电影票。我们简化一点,这个业务需要涉及到以下操作:
从顾客 A 账户余额中扣除电影票价;
给影院 B 的账户余额增加这张电影票价;
记录一条交易日志。
也就是说,要完成这个交易,我们需要 update 两条记录,并 insert 一条记录。当然,为了保证交易的原子性,我们要把这三个操作放在一个事务中。那么,你会怎样安排这三个语句在事务中的顺序呢?试想如果同时有另外一个顾客 C 要在影院 B 买票,那么这两个事务冲突的部分就是语句 2 了。因为它们要更新同一个影院账户的余额,需要修改同一行数据。根据两阶段锁协议,不论你怎样安排语句顺序,所有的操作需要的行锁都是在事务提交的时候才释放的。所以,如果你把语句 2 安排在最后,比如按照 3、1、2 这样的顺序,那么影院账户余额这一行的锁时间就最少。这就最大程度地减少了事务之间的锁等待,提升了并发度。
死锁和死锁检测
这时候,事务 A 在等待事务 B 释放 id=2 的行锁,而事务 B 在等待事务 A 释放 id=1 的行锁。
事务 A 和事务 B 在互相等待对方的资源释放,就是进入了死锁状态。当出现死锁以后,有两种策略:
一种策略是,直接进入等待,直到超时。这个超时时间可以通过参数 innodb_lock_wait_timeout 来设置。(默认值是 50s)
另一种策略是,发起死锁检测,发现死锁后,主动回滚死锁链条中的某一个事务,让其他事务得以继续执行。参数 innodb_deadlock_detect 默认设置为 on
主动死锁检测在发生死锁的时候,是能够快速发现并进行处理的,但是它也是有额外负担的。
每当一个事务被锁的时候,就要看看它所依赖的线程有没有被别人锁住,如此循环,最后判断是否出现了循环等待,也就是死锁。那如果是我们上面说到的所有事务都要更新同一行的场景呢?每个新来的被堵住的线程,都要判断会不会由于自己的加入导致了死锁,这是一个时间复杂度是 O(n) 的操作。假设有 1000 个并发线程要同时更新同一行,那么死锁检测操作就是 100 万这个量级的。虽然最终检测的结果是没有死锁,但是这期间要消耗大量的 CPU 资源。因此,你就会看到 CPU 利用率很高,但是每秒却执行不了几个事务。??????????
那么怎么解决由这种热点行更新导致的性能问题呢?
一种头痛医头的方法,就是如果你能确保这个业务一定不会出现死锁,可以临时把死锁检测关掉。但是这种操作本身带有一定的风险,因为业务设计的时候一般不会把死锁当做一个严重错误,毕竟出现死锁了,就回滚,然后通过业务重试一般就没问题了,这是业务无损的。而关掉死锁检测意味着可能会出现大量的超时,这是业务有损的。
另一个思路是控制并发度。根据上面的分析,你会发现如果并发能够控制住,比如同一行同时最多只有 10 个线程在更新,那么死锁检测的成本很低,就不会出现这个问题。一个直接的想法就是,在客户端做并发控制。但是,你会很快发现这个方法不太可行,因为客户端很多。我见过一个应用,有 600 个客户端,这样即使每个客户端控制到只有 5 个并发线程,汇总到数据库服务端以后,峰值并发数也可能要达到 3000。
因此,这个并发控制要做在数据库服务端。如果你有中间件,可以考虑在中间件实现;如果你的团队有能修改 MySQL 源码的人,也可以做在 MySQL 里面。基本思路就是,对于相同行的更新,在进入引擎之前排队。这样在 InnoDB 内部就不会有大量的死锁检测工作了。可能你会问,如果团队里暂时没有数据库方面的专家,不能实现这样的方案,能不能从设计上优化这个问题呢?
可以考虑通过将一行改成逻辑上的多行来减少锁冲突。还是以影院账户为例,可以考虑放在多条记录上,比如 10 个记录,影院的账户总额等于这 10 个记录的值的总和。这样每次要给影院账户加金额的时候,随机选其中一条记录来加。这样每次冲突概率变成原来的 1/10,可以减少锁等待个数,也就减少了死锁检测的 CPU 消耗。这个方案看上去是无损的,但其实这类方案需要根据业务逻辑做详细设计。如果账户余额可能会减少,比如退票逻辑,那么这时候就需要考虑当一部分行记录变成 0 的时候,代码要有特殊处理。
8 mvcc
先从例子讲起:
mysql> CREATE TABLE `t` (
`id` int(11) NOT NULL,
`k` int(11) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB;
insert into t(id, k) values(1,1),(2,2);
结果:事务 B 查到的 k 的值是 3,而事务 A 查到的 k 的值是 1
注:begin/start transaction 命令并不是一个事务的起点,在执行到它们之后的第一个操作 InnoDB 表的语句,事务才真正启动,一致性视图也是在执行第一个快照读语句时创建的。如果你想要马上启动一个事务,可以使用 start transaction with consistent snapshot 这个命令,一致性视图也是在执行 start transaction with consistent snapshot 时创建的。autocommit=的时候,update 语句本身就是一个事务,语句完成的时候会自动提交。
InnoDB 里面每个事务有一个唯一的事务 ID,叫作 transaction id。它是在事务开始的时候向 InnoDB 的事务系统申请的,是按申请顺序严格递增的。而每行数据也都是有多个版本的。每次事务更新数据的时候,都会生成一个新的数据版本,并且把 transaction id 赋值给这个数据版本的事务 ID,记为 row trx_id。同时,旧的数据版本要保留,并且在新的数据版本中,能够有信息可以直接拿到它。也就是说,数据表中的一行记录,其实可能有多个版本 (row),每个版本有自己的 row trx_id。如图 2 所示,就是一个记录被多个事务连续更新后的状态。
图中的三个虚线箭头U1、U2、U3,就是 undo log,而 V1、V2、V3 并不是物理上真实存在的,而是每次需要的时候根据当前版本和 undo log 计算出来的
在实现上, InnoDB 为每个事务构造了一个数组,用来保存这个事务启动瞬间,当前正在“活跃”的所有事务 ID。“活跃”指的就是,启动了但还没提交。数组里面事务 ID 的最小值记为低水位,当前系统里面已经创建过的事务 ID 的最大值加 1 记为高水位。这个视图数组和高水位,就组成了当前事务的一致性视图(read-view)。
而数据版本的可见性规则,就是基于数据的 row trx_id 和这个一致性视图的对比结果得到的。这个视图数组把所有的 row trx_id 分成了几种不同的情况。
这样,对于当前事务的启动瞬间来说,一个数据版本的 row trx_id,有以下几种可能:
如果落在绿色部分,表示这个版本是已提交的事务或者是当前事务自己生成的,这个数据是可见的;
如果落在红色部分,表示这个版本是由将来启动的事务生成的,是肯定不可见的;
如果落在黄色部分,那就包括两种情况
a. 若 row trx_id 在数组中,表示这个版本是由还没提交的事务生成的,不可见;
b. 若 row trx_id 不在数组中,表示这个版本是已经提交了的事务生成的,可见。
更新逻辑
事务 B 的视图数组是先生成的,之后事务 C 才提交,不是应该看不见 (1,2) 吗,怎么能算出 (1,3) 来?
更新数据都是先读后写的,而这个读,只能读当前的值,称为“当前读”(current read)。
因此,在更新的时候,当前读拿到的数据是 (1,2),更新后生成了新版本的数据 (1,3),这个新版本的 row trx_id 是 101。
除了 update 语句外,select 语句如果加锁,也是当前读。
所以,如果把事务 A 的查询语句 select * from t where id=1 修改一下,加上 lock in share mode 或 for update,也都可以读到版本号是 101 的数据,返回的 k 的值是 3。下面这两个 select 语句,就是分别加了读锁(S 锁,共享锁)和写锁(X 锁,排他锁)。
mysql> select k from t where id=1 lock in share mode;
mysql> select k from t where id=1 for update;
而读提交的逻辑和可重复读的逻辑类似,它们最主要的区别是:
在可重复读隔离级别下,只需要在事务开始的时候创建一致性视图,之后事务里的其他查询都共用这个一致性视图;
在读提交隔离级别下,每一个语句执行前都会重新算出一个新的视图。
9 普通索引和唯一索引
1)查询
对于普通索引来说,查找到满足条件的第一个记录 后,需要查找下一个记录,直到碰到第一个不满足条件的记录。
对于唯一索引来说,由于索引定义了唯一性,查找到第一个满足条件的记录后,就会停止继续检索。
那么,这个不同带来的性能差距会有多少呢?答案是,微乎其微。
找到满足条件的记录两者的性能一样,普通索引需要继续查找,直到碰到第一个不满足条件的记录。如果已经读到这个数据页的最后一个记录,那么要取下一个记录,必须读取下一个数据页,但是出现这种情况的概率会很低。
2)更新
当需要更新一个数据页时,如果数据页在内存中就直接更新,而如果这个数据页还没有在内存中的话,在不影响数据一致性的前提下,InnoDB 会将这些更新操作缓存在 change buffer (用的 buffer pool,可以通过参数 innodb_change_buffer_max_size 来动态设置)中,这样就不需要从磁盘中读入这个数据页了。在下次查询需要访问这个数据页的时候,将数据页读入内存,然后执行 change buffer 中与这个页有关的操作。
唯一索引的更新就不能使用 change buffer(要插入记录,就要先判断现在表中是否已经存在一样的记录,而这必须要将数据页读入内存才能判断),实际上也只有普通索引可以使用。
带change buffer的更新流程
这个记录要更新的目标页在内存中,普通索引和唯一索引差不多
这个记录要更新的目标页不在内存中
-对于唯一索引来说,需要将数据页读入内存,判断到没有冲突,插入这个值,语句执行结束;
-对于普通索引来说,则是将更新记录在 change buffer,语句执行就结束了。
将数据从磁盘读入内存涉及随机 IO 的访问,是数据库里面成本最高的操作之一。change buffer 因为减少了随机磁盘访问,所以对更新性能的提升是会很明显的。
3)change buffer 的使用场景
在一个数据页做 merge 之前,change buffer 记录的变更越多(也就是这个页面上要更新的次数越多),收益就越大。
因此,对于写多读少的业务来说,页面在写完以后马上被访问到的概率比较小,此时 change buffer 的使用效果最好。这种业务模型常见的就是账单类、日志类的系统。
反过来,假设一个业务的更新模式是写入之后马上会做查询,那么即使满足了条件,将更新先记录在 change buffer,但之后由于马上要访问这个数据页,会立即触发 merge 过程。这样随机访问 IO 的次数不会减少,反而增加了 change buffer 的维护代价。所以,对于这种业务模式来说,change buffer 反而起到了副作用。
4)索引选择和实践
尽量选择普通索引。并且如果所有的更新后面,都马上伴随着对这个记录的查询,那么你应该关闭 change buffer。而在其他情况下,change buffer 都能提升更新性能。
普通索引和 change buffer 的配合使用,对于数据量大的表的更新优化还是很明显的。
特别地,在使用机械硬盘时,把 change buffer 尽量开大,change buffer 这个机制的收效是非常显著的。
5)change buffer 和 redo log
redo log 主要节省的是随机写磁盘的 IO 消耗(转成顺序写),而 change buffer 主要节省的则是随机读磁盘的 IO 消耗。
10 选错索引
优化器根据扫描行数、是否使用临时表、是否排序等因素进行综合判断。
show index from table_name; 查看索引
analyze table table_name; 可以用来重新统计索引信息
索引选择异常的处理办法
一种方法是,采用 force index 强行选择一个我们认为正确的索引。缺点:一这么写不优美,二来如果索引改了名字,这个语句也得改,显得很麻烦。而且如果以后迁移到别的数据库的话,这个语法还可能会不兼容;三是修改之后还要测试和发布,对于生产系统来说,这个过程不够敏捷。
二种方法就是,我们可以考虑修改语句,引导 MySQL 使用我们期望的索引。
三种方法是,在有些场景下,我们可以新建一个更合适的索引,来提供给优化器做选择,或删掉误用的索引。
11 字符串索引
先看例子:
mysql> create table SUser(
ID bigint unsigned primary key,
email varchar(64),
...
)engine=innodb;
mysql> alter table SUser add index index1(email); // 索引里面,包含了每个记录的整个字符串
或
mysql> alter table SUser add index index2(email(6)); // 索引里面,对于每个记录都是只取前 6 个字节
由于 email(6) 这个索引结构中每个邮箱字段都只取前 6 个字节(即:zhangs),所以占用的空间会更小,这就是使用前缀索引的优势。
但,这同时带来的损失是,可能会增加额外的记录扫描次数。
但是,对于这个查询语句来说,如果你定义的 index2 不是 email(6) 而是 email(7),也就是说取 email 字段的前 7 个字节来构建索引的话,即满足前缀’zhangss’的记录只有一个,也能够直接查到 ID2,只扫描一行就结束了。
也就是说使用前缀索引,定义好长度,就可以做到既节省空间,又不用额外增加太多的查询成本。
当要给字符串创建前缀索引时,有什么方法能够确定我应该使用多长的前缀呢?
mysql> select
count(distinct left(email,4))as L4,
count(distinct left(email,5))as L5,
count(distinct left(email,6))as L6,
count(distinct left(email,7))as L7,
from SUser;
使用前缀索引很可能会损失区分度,所以你需要预先设定一个可以接受的损失比例,比如 5%。然后,在返回的 L4~L7 中,找出不小于 L * 95% 的值,假设这里 L6、L7 都满足,你就可以选择前缀长度为 6。
前缀索引对覆盖索引的影响:
select id,email from SUser where email='zhangssxyz@xxx.com';
所以,如果使用 index1(即 email 整个字符串的索引结构)的话,可以利用覆盖索引,从 index1 查到结果后直接就返回了,不需要回到 ID 索引再去查一次。而如果使用 index2(即 email(6) 索引结构)的话,就不得不回到 ID 索引再去判断 email 字段的值。即使你将 index2 的定义修改为 email(18) 的前缀索引,这时候虽然 index2 已经包含了所有的信息,但 InnoDB 还是要回到 id 索引再查一下,因为系统并不确定前缀索引的定义是否截断了完整信息。
也就是说,使用前缀索引就用不上覆盖索引对查询性能的优化
想用前缀索引,但是前缀的区分度不够好的情况时,我们要怎么办呢?
第一种方式是使用倒序存储。如果你存储身份证号的时候把它倒过来存,每次查询的时候,你可以这么写:
mysql> select field_list from t where id_card = reverse('input_id_card_string');
第二种方式是使用 hash 字段。
mysql> alter table t add id_card_crc int unsigned, add index(id_card_crc);
由于校验码可能存在冲突,所以你的查询语句 where 部分要判断 id_card 的值是否精确相同。
mysql> select field_list from t where id_card_crc=crc32('input_id_card_string') and id_card='input_id_card_string' // crc32 只有4个字节
使用倒序存储和使用 hash 字段这两种方法的异同点。
它们的相同点是,都不支持范围查询
它们的区别,主要体现在以下三个方面:从占用的额外空间来看,倒序存储方式在主键索引上,不会消耗额外的存储空间,而 hash 字段方法需要增加一个字段。当然,倒序存储方式使用 4 个字节的前缀长度应该是不够的,如果再长一点,这个消耗跟额外这个 hash 字段也差不多抵消了。在 CPU 消耗方面,倒序方式每次写和读的时候,都需要额外调用一次 reverse 函数,而 hash 字段的方式需要额外调用一次 crc32() 函数。如果只从这两个函数的计算复杂度来看的话,reverse 函数额外消耗的 CPU 资源会更小些。从查询效率上看,使用 hash 字段方式的查询性能相对更稳定一些。因为 crc32 算出来的值虽然有冲突的概率,但是概率非常小,可以认为每次查询的平均扫描行数接近 1。而倒序存储方式毕竟还是用的前缀索引的方式,也就是说还是会增加扫描行数。
12 脏页落盘
一条 SQL 语句,正常执行的时候特别快,但是有时也不知道怎么回事,它就会变得特别慢,并且这样的场景很难复现,它不只随机,而且持续时间还很短。why?
脏页落盘checkpoint时机
第一种场景是, InnoDB 的 redo log 写满了。这时候系统会停止所有更新操作,把 checkpoint 往前推进,redo log 留出空间可以继续写
第二种场景是,系统内存不足。当需要新的内存页,而内存不够用的时候,就要淘汰一些数据页,空出内存给别的数据页使用。如果淘汰的是“脏页”,就要先将脏页写到磁盘。
第三种场景是, MySQL 认为系统“空闲”的时候。
第四种场景是, MySQL 正常关闭的情况。这时候,MySQL 会把内存的脏页都 flush 到磁盘上,这样下次 MySQL 启动的时候,就可以直接从磁盘上读数据,启动速度会很快。
上面四种场景对性能的影响
第三种情况是属于 MySQL 空闲时的操作,这时系统没什么压力,而第四种场景是数据库本来就要关闭了。这两种情况下,你不会太关注“性能”问题。所以这里,我们主要来分析一下前两种场景下的性能问题。
第一种是“redo log 写满了,要 flush 脏页”,这种情况是 InnoDB 要尽量避免的。因为出现这种情况的时候,整个系统就不能再接受更新了,所有的更新都必须堵住。如果你从监控上看,这时候更新数会跌为 0。
第二种是“内存不够用了,要先将脏页写到磁盘”,这种情况其实是常态。但是出现以下这两种情况,都是会明显影响性能的:
1一个查询要淘汰的脏页个数太多,会导致查询的响应时间明显变长;
2日志写满,更新全部堵住,写性能跌为 0,这种情况对敏感业务来说,是不能接受的。
所以,InnoDB 需要有控制脏页比例的机制,来尽量避免上面的这两种情况。
InnoDB 刷脏页的控制策略
首先,你要正确地告诉 InnoDB 所在主机的 IO 能力,这样 InnoDB 才能知道需要全力刷脏页的时候,可以刷多快。这就要用到 innodb_io_capacity 这个参数了,它会告诉 InnoDB 你的磁盘能力。这个值我建议你设置成磁盘的 IOPS。磁盘的 IOPS 可以通过 fio 这个工具来测试,下面的语句是我用来测试磁盘随机读写的命令:
fio -filename=$filename -direct=1 -iodepth 1 -thread -rw=randrw -ioengine=psync -bs=16k -size=500M -numjobs=10 -runtime=10 -group_reporting -name=mytest
之前,就曾有其他公司的开发负责人找我看一个库的性能问题,说 MySQL 的写入速度很慢,TPS 很低,但是数据库主机的 IO 压力并不大。经过一番排查,发现罪魁祸首就是这个参数的设置出了问题。
所以,InnoDB 的刷盘速度就是要参考这两个因素:一个是脏页比例,一个是 redo log 写盘速度。
脏页比例:
mysql> use performance_schema;
mysql> select VARIABLE_VALUE into @a from global_status where VARIABLE_NAME = 'Innodb_buffer_pool_pages_dirty';
select VARIABLE_VALUE into @b from global_status where VARIABLE_NAME = 'Innodb_buffer_pool_pages_total';
select @a/@b;
在 InnoDB 中,innodb_flush_neighbors 参数,值为 1 的时候会有上述的“连坐”机制,在准备刷一个脏页的时候,如果这个数据页旁边的数据页刚好是脏页,就会把这个“邻居”也带着一起刷掉。值为 0 时表示不找邻居,自己刷自己的。
13 索引重建
将 innodb_file_per_table 设置为 ON,是推荐做法,每个 InnoDB 表数据存储在一个以 .ibd 为后缀的文件中。
假设,我们要删掉 R4 这个记录,InnoDB 引擎只会把 R4 这个记录标记为删除。如果之后要再插入一个 ID 在 300 和 600 之间的记录时,可能会复用这个位置。但是,磁盘文件的大小并不会缩小。
如果我们删掉了一个数据页上的所有记录,整个数据页就可以被复用了。
但是,数据页的复用跟记录的复用是不同的。
记录的复用,只限于符合范围条件的数据。
而当整个页从 B+ 树里面摘掉以后,可以复用到任何位置。
如果相邻的两个数据页利用率都很小,系统就会把这两个页上的数据合到其中一个页上,另外一个数据页就被标记为可复用。
进一步地,如果我们用 delete 命令把整个表的数据删除呢?结果就是,所有的数据页都会被标记为可复用。但是磁盘上,文件不会变小。
这些可以复用,而没有被使用的空间,看起来就像是“空洞”。
实际上,不止是删除数据会造成空洞,插入数据也会。
另外,更新索引上的值,可以理解为删除一个旧的值,再插入一个新值。不难理解,这也是会造成空洞的。
也就是说,经过大量增删改的表,都是可能是存在空洞的。所以,如果能够把这些空洞去掉,就能达到收缩表空间的目的。
而重建表,就可以达到这样的目的。
重建表
可以新建一个与表 A 结构相同的表 B,然后按照主键 ID 递增的顺序,把数据一行一行地从表 A 里读出来再插入到表 B 中。数据从表 A 导入表 B 的操作完成后,用表 B 替换 A
可以使用 alter table A engine=InnoDB 命令来重建表。在 MySQL 5.5 版本之前,这个命令的执行流程跟前面描述的差不多。临时表tmp_table,是在 server 层创建的。
拷贝表的方式,其实隐含的意思是:
alter table t engine=innodb,ALGORITHM=copy;
MySQL 5.6 版本开始引入的 Online DDL,对这个操作流程做了优化。“tmp_file”临时文件是 InnoDB 在内部创建出来的。整个 DDL 过程都在 InnoDB 内部完成。对于 server 层来说,没有把数据挪动到临时表,是一个“原地”操作,这就是“inplace”名称的来源。
重建表的这个语句 alter table t engine=InnoDB,其实隐含的意思是:
alter table t engine=innodb,ALGORITHM=inplace;
建立一个临时文件,扫描表 A 主键的所有数据页;用数据页中表 A 的记录生成 B+ 树,存储到临时文件中;生成临时文件的过程中,将所有对 A 的操作记录在一个日志文件(row log)中,对应的是图中 state2 的状态;临时文件生成后,将日志文件中的操作应用到临时文件,得到一个逻辑数据上与表 A 相同的数据文件,对应的就是图中 state3 的状态;用临时文件替换表 A 的数据文件。
DDL 之前是要拿 MDL 写锁的,这样还能叫 Online DDL 吗?确实,图 4 的流程中,alter 语句在启动的时候需要获取 MDL 写锁,但是这个写锁在真正拷贝数据之前就退化成读锁了。为什么要退化呢?为了实现 Online,MDL 读锁不会阻塞增删改操作。
如果想要比较安全的操作的话,我推荐你使用 GitHub 开源的 gh-ost 来做。
给 InnoDB 表的一个字段加全文索引,写法是:alter table t add FULLTEXT(field_name); 这个过程是 inplace 的,但会阻塞增删改操作,是非 Online 的。
从 MySQL 5.6 版本开始,alter table t engine = InnoDB(也就是 recreate)默认的就是上图的流程了;
analyze table t 其实不是重建表,只是对表的索引信息做重新统计,没有修改数据,这个过程中加了 MDL 读锁;
optimize table t 等于 recreate+analyze。
14 count(*)
select count(*) from t
—MyISAM 引擎把一个表的总行数存在了磁盘上,因此执行 count(*) 的时候会直接返回这个数,效率很高;如果加了 where 条件的话,MyISAM 表也是不能返回得这么快的。
—而 InnoDB 引擎就麻烦了,它执行 count(*) 的时候,需要把数据一行一行地从引擎里面读出来,然后累积计数。MySQL 优化器会找到最小的那棵树来遍历。在保证逻辑正确的前提下,尽量减少扫描的数据量,是数据库系统设计的通用法则之一。
—show table status 命令的输出结果里面TABLE_ROWS是通过采样来估算的,误差可能达到 40% 到 50%
为什么 InnoDB 不跟 MyISAM 一样,也把数字存起来呢?
因为即使是在同一个时刻的多个查询,由于多版本并发控制(MVCC)的原因,InnoDB 表“应该返回多少行”也是不确定的。
如果你现在有一个页面经常要显示交易系统的操作记录总数,到底应该怎么办呢?
答案是,我们只能自己计数。
用缓存系统保存计数
用一个 Redis 服务来保存这个表的总行数。这个表每被插入一行 Redis 计数就加 1,每被删除一行 Redis 计数就减 1。
—但是缓存系统可能会丢失更新。
—将计数保存在缓存系统中的方式,还不只是丢失更新的问题。即使 Redis 正常工作,这个值还是逻辑上不精确的。
因为这两个不同的存储构成的系统,不支持分布式事务,无法拿到精确一致的视图。
在数据库保存计数
—首先,这解决了崩溃丢失的问题,InnoDB 是支持崩溃恢复不丢数据的。
—计数不精确的问题。
但是从并发系统性能的角度考虑,回话A中应该先插入操作记录,再更新计数表。因为更新计数表涉及到行锁的竞争,先插入再更新能最大程度地减少了事务之间的锁等待,提升了并发度。
虽然会话 B 的读操作仍然是在 T3 执行的,但是因为这时候更新事务还没有提交,所以计数值加 1 这个操作对会话 B 还不可见。因此,会话 B 看到的结果里, 查计数值和“最近 100 条记录”看到的结果,逻辑上就是一致的。
不同的 count 用法
count(*)、count(主键 id) 和 count(1) 都表示返回满足条件的结果集的总行数;而 count(字段),则表示返回满足条件的数据行里面,参数“字段”不为 NULL 的总个数。
现在的优化器只优化了 count(*) 的语义为“取行数”,其他“显而易见”的优化并没有做。
—-对于 count(主键 id) 来说,InnoDB 引擎会遍历整张表,把每一行的 id 值都取出来,返回给 server 层。server 层拿到 id 后,判断是不可能为空的,就按行累加。
—-对于 count(1) 来说,InnoDB 引擎遍历整张表,但不取值。server 层对于返回的每一行,放一个数字“1”进去,判断是不可能为空的,按行累加。
单看这两个用法的差别的话,你能对比出来,count(1) 执行得要比 count(主键 id) 快。因为从引擎返回 id 会涉及到解析数据行,以及拷贝字段值的操作。
—-对于 count(字段) 来说:如果这个“字段”是定义为 not null 的话,一行行地从记录里面读出这个字段,判断不能为 null,按行累加;如果这个“字段”定义允许为 null,那么执行的时候,判断到有可能是 null,还要把值取出来再判断一下,不是 null 才累加。
—对于count(*) ,并不会把全部字段取出来,而是专门做了优化,不取值。count(*) 肯定不是 null,按行累加。
按照效率排序的话,count(字段)<count(主键 id)<count(1)≈count(*)
15 答疑
16 order by
例子:
CREATE TABLE `t` (
`id` int(11) NOT NULL,
`city` varchar(16) NOT NULL,
`name` varchar(16) NOT NULL,
`age` int(11) NOT NULL,
`addr` varchar(128) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `city` (`city`)
) ENGINE=InnoDB;
要查询城市是“杭州”的所有人名字,并且按照姓名排序返回前 1000 个人的姓名、年龄。
select city,name,age from t where city='杭州' order by name limit 1000 ;
全字段排序
在 city 字段上创建索引之后,我们用 explain 命令来看看这个语句的执行情况。
Extra 这个字段中的“Using filesort”表示的就是需要排序,MySQL 会给每个线程分配一块内存用于排序,称为 sort_buffer。
这个语句执行流程如下所示 :
初始化 sort_buffer,确定放入 name、city、age 这三个字段;
从索引 city 找到第一个满足 city='杭州’条件的主键 id,也就是图中的 ID_X;
到主键 id 索引取出整行,取 name、city、age 三个字段的值,存入 sort_buffer 中;
从索引 city 取下一个记录的主键 id;
重复步骤 3、4 直到 city 的值不满足查询条件为止,对应的主键 id 也就是图中的 ID_Y;
对 sort_buffer 中的数据按照字段 name 做快速排序;
按照排序结果取前 1000 行返回给客户端。
示意图如下:
“按 name 排序”可能在内存中完成,也可能需要使用外部排序,这取决于排序所需的内存和参数 sort_buffer_size。
如果要排序的数据量小于 sort_buffer_size,排序就在内存中完成。但如果排序数据量太大,内存放不下,则不得不利用磁盘临时文件辅助排序。
rowid 排序
如果查询要返回的字段很多的话,那么 sort_buffer 里面要放的字段数太多,这样内存里能够同时放下的行数很少,要分成很多个临时文件,排序的性能会很差。
修改一个参数,让 MySQL 采用另外一种算法。max_length_for_sort_data,是 MySQL 中专门控制用于排序的行数据的长度的一个参数。它的意思是,如果单行的长度超过这个值,MySQL 就认为单行太大,要换一个算法。
SET max_length_for_sort_data = 16;
新的算法放入 sort_buffer 的字段,只有要排序的列(即 name 字段)和主键 id。
但这时,排序的结果就因为少了 city 和 age 字段的值,不能直接返回了,整个执行流程就变成如下所示的样子:
1初始化 sort_buffer,确定放入两个字段,即 name 和 id;
2从索引 city 找到第一个满足 city='杭州’条件的主键 id,也就是图中的 ID_X;
3到主键 id 索引取出整行,取 name、id 这两个字段,存入 sort_buffer 中;
4从索引 city 取下一个记录的主键 id;
5重复步骤 3、4 直到不满足 city='杭州’条件为止,也就是图中的 ID_Y;
6对 sort_buffer 中的数据按照字段 name 进行排序;
7遍历排序结果,取前 1000 行,并按照 id 的值回到原表中取出 city、name 和 age 三个字段返回给客户端。
rowid 排序多访问了一次表 t 的主键索引,就是步骤 7。
全字段排序 VS rowid 排序
如果 MySQL 实在是担心排序内存太小,会影响排序效率,才会采用 rowid 排序算法,这样排序过程中一次可以排序更多行,但是需要再回到原表去取数据。
如果 MySQL 认为内存足够大,会优先选择全字段排序,把需要的字段都放到 sort_buffer 中,这样排序后就会直接从内存里面返回查询结果了,不用再回到原表去取数据。
这也就体现了 MySQL 的一个设计思想:如果内存够,就要多利用内存,尽量减少磁盘访问。
对于 InnoDB 表来说,rowid 排序会要求回表多造成磁盘读,因此不会被优先选择。
并不是所有的 order by 语句,都需要排序操作的
alter table t add index city_user(city, name); // 只要 city 的值是杭州,name 的值就一定是有序的。
引入 (city,name) 联合索引后,查询语句的执行计划
针对这个查询,我们可以创建一个 city、name 和 age 的联合索引
alter table t add index city_user_age(city, name, age);
引入 (city,name,age) 联合索引后,查询语句的执行流程,使用了覆盖索引,性能上会快很多。
17 随机排序
mysql> select word from words order by rand() limit 3;
随机排序取前 3 个。虽然这个 SQL 语句写法很简单,但执行流程却有点复杂的。
Extra 字段显示 Using temporary,表示的是需要使用临时表;Using filesort,表示的是需要执行排序操作。
这条语句的执行流程是这样的:创建一个临时表。这个临时表使用的是 memory 引擎,表里有两个字段,第一个字段是 double 类型,为了后面描述方便,记为字段 R,第二个字段是 varchar(64) 类型,记为字段 W。并且,这个表没有建索引。从 words 表中,按主键顺序取出所有的 word 值。对于每一个 word 值,调用 rand() 函数生成一个大于 0 小于 1 的随机小数,并把这个随机小数和 word 分别存入临时表的 R 和 W 字段中,到此,扫描行数是 10000。现在临时表有 10000 行数据了,接下来你要在这个没有索引的内存临时表上,按照字段 R 排序。初始化 sort_buffer。sort_buffer 中有两个字段,一个是 double 类型,另一个是整型。从内存临时表中一行一行地取出 R 值和位置信息(我后面会和你解释这里为什么是“位置信息”),分别存入 sort_buffer 中的两个字段里。这个过程要对内存临时表做全表扫描,此时扫描行数增加 10000,变成了 20000。在 sort_buffer 中根据 R 的值进行排序。注意,这个过程没有涉及到表操作,所以不会增加扫描行数。排序完成后,取出前三个结果的位置信息,依次到内存临时表中取出 word 值,返回给客户端。这个过程中,访问了表的三行数据,总扫描行数变成了 20003。
order by rand() 使用了内存临时表,内存临时表排序的时候使用了 rowid 排序方法。
随机排序方法
如果只随机选择 1 个 word 值,可以怎么做呢?
取得这个表的主键 id 的最大值 M 和最小值 N;
用随机函数生成一个最大值到最小值之间的数 X = (M-N)*rand() + N;
取不小于 X 的第一个 ID 的行。
mysql> select max(id),min(id) into @M,@N from t ;
set @X= floor((@M-@N+1)*rand() + @N);
select * from t where id >= @X limit 1;
取 max(id) 和 min(id) 都是不需要扫描索引的,而第三步的 select 也可以用索引快速定位,可以认为就只扫描了 3 行
但实际上,这个算法本身并不严格满足题目的随机要求,因为 ID 中间可能有空洞,因此选择不同行的概率不一样,不是真正的随机。比如你有 4 个 id,分别是 1、2、4、5,如果按照上面的方法,那么取到 id=4 的这一行的概率是取得其他行概率的两倍。如果这四行的 id 分别是 1、2、40000、40001 呢?这个算法基本就能当 bug 来看待了。
为了得到严格随机的结果,可以用下面这个流程:
取得整个表的行数,并记为 C。
取得 Y = floor(C * rand())。 floor 函数在这里的作用,就是取整数部分。
再用 limit Y,1 取得一行。
mysql> select count(*) into @C from t;
set @Y = floor(@C * rand());
set @sql = concat("select * from t limit ", @Y, ",1");
prepare stmt from @sql;
execute stmt;
DEALLOCATE prepare stmt;
MySQL 处理 limit Y,1 的做法就是按顺序一个一个地读出来,丢掉前 Y 个,然后把下一个记录作为返回结果,因此这一步需要扫描 Y+1 行。再加上,第一步扫描的 C 行,总共需要扫描 C+Y+1 行,执行代价比随机算法 1 的代价要高。当然,随机算法 2 跟直接 order by rand() 比起来,执行代价还是小很多的。
如果我们按照随机算法 2 的思路,要随机取 3 个 word 值呢?可以这么做:
取得整个表的行数,记为 C;
根据相同的随机方法得到 Y1、Y2、Y3;
再执行三个 limit Y, 1 语句得到三行数据。
mysql> select count(*) into @C from t;
set @Y1 = floor(@C * rand());
set @Y2 = floor(@C * rand());
set @Y3 = floor(@C * rand());
select * from t limit @Y1,1; //在应用代码里面取Y1、Y2、Y3值,拼出SQL后执行
select * from t limit @Y2,1;
select * from t limit @Y3,1;
18 SQL语句索引性能优化
对索引字段做函数操作,可能会破坏索引值的有序性,因此优化器就决定放弃走树搜索功能。
1、条件字段函数操作
mysql> select count(*) from tradelog where month(t_modified)=7;
对索引字段做函数操作,可能会破坏索引值的有序性,因此优化器就决定放弃走树搜索功能。
优化器并不是要放弃使用这个索引。优化器可以选择遍历主键索引,也可以选择遍历索引 t_modified,优化器对比索引大小后发现,索引 t_modified 更小,遍历这个索引比遍历主键索引来得更快。因此最终还是会选择索引 t_modified的全索引扫描
把SQL改为这样,优化器就能按照我们预期的,用上 t_modified 索引的快速定位能力
mysql> select count(*) from tradelog where
-> (t_modified >= '2016-7-1' and t_modified<'2016-8-1') or
-> (t_modified >= '2017-7-1' and t_modified<'2017-8-1') or
-> (t_modified >= '2018-7-1' and t_modified<'2018-8-1');
另外,对于 select * from tradelog where id + 1 = 10000 这个 SQL 语句,这个加 1 操作并不会改变有序性,但是 MySQL 优化器还是不能用 id 索引快速定位到 9999 这一行。所以,需要你在写 SQL 语句的时候,手动改写成 where id = 10000 -1 才可以。
2、隐式类型转换
mysql> select * from tradelog where tradeid=110717;
tradeid 的字段类型是 varchar(32),而输入的参数却是整型,所以需要做类型转换。
在 MySQL 中,字符串和数字做比较的话,是将字符串转换成数字。
上面的SQL就相当于
mysql> select * from tradelog where CAST(tradid AS signed int) = 110717;
3、隐式字符编码转换
mysql> select d.* from tradelog l, trade_detail d where d.tradeid=l.tradeid and l.id=2; /*语句Q1*/
执行流程是这样的:
因为这两个表的字符集不同,trade_detail是 utf8,tradelog是 utf8mb4,utf8mb4 是 utf8 的超集,所以做表连接查询的时候用不上关联字段的索引,上面的SQL就相当于下面的写法:
select * from trade_detail where CONVERT(traideid USING utf8mb4)=$L2.tradeid.value;
如果要优化语句select d.* from tradelog l, trade_detail d where d.tradeid=l.tradeid and l.id=2;的执行过程,有两种做法:
比较常见的优化方法是,把 trade_detail 表上的 tradeid 字段的字符集也改成 utf8mb4,这样就没有字符集转换的问题了。
alter table trade_detail modify tradeid varchar(32) CHARACTER SET utf8mb4 default null;
如果能够修改字段的字符集的话,是最好不过了。但如果数据量比较大, 或者业务上暂时不能做这个 DDL 的话,那就只能采用修改 SQL 语句的方法了。
mysql> select d.* from tradelog l , trade_detail d where d.tradeid=CONVERT(l.tradeid USING utf8) and l.id=2;
19 为什么我只查一行的语句,也执行这么慢
mysql> CREATE TABLE `t` (
`id` int(11) NOT NULL,
`c` int(11) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB;
delimiter ;;
create procedure idata()
begin
declare i int;
set i=1;
while(i<=100000) do
insert into t values(i,i);
set i=i+1;
end while;
end;;
delimiter ;
call idata();
在表 t 执行下面的 SQL 语句,查询结果长时间不返回
mysql> select * from t where id=1;
等MDL 锁
分析原因的时候,一般都是首先执行一下 show processlist 命令,看看当前语句处于什么状态
这类问题的处理方式,就是找到谁持有 MDL 写锁,然后把它 kill 掉。
在 show processlist 的结果里面 Command 列是“Sleep”,看不出是哪个session阻塞了,导致查找起来很不方便。不过有了 performance_schema 和 sys 系统库以后,就方便多了。(MySQL 启动时需要设置 performance_schema=on,相比于设置为 off 会有 10% 左右的性能损失)
等MDL 锁
等行锁
查询谁占用某个表的行锁
mysql> select * from t sys.innodb_lock_waits where locked_table='`test`.`t`'\G
查询慢
带 lock in share mode 的 SQL 语句,是当前读,因此会直接读到 1000001 这个结果,所以速度很快;而 select * from t where id=1 这个语句,是一致性读,因此需要从 1000001 开始,依次执行 undo log,执行了 100 万次以后,才将 1 这个结果返回。
20、幻读
先从例子讲起
CREATE TABLE `t` (
`id` int(11) NOT NULL,
`c` int(11) DEFAULT NULL,
`d` int(11) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `c` (`c`)
) ENGINE=InnoDB;
insert into t values(0,0,0),(5,5,5),
(10,10,10),(15,15,15),(20,20,20),(25,25,25);
假设没有事务隔离
Q3 读到 id=1 这一行的现象,被称为“幻读”。
对“幻读”做一个说明:
—在可重复读隔离级别下,普通的查询是快照读,是不会看到别的事务插入的数据的。因此,幻读在“当前读”下才会出现。
—上面 session B 的修改结果,被 session A 之后的 select 语句用“当前读”看到,不能称为幻读。幻读仅专指“新插入的行”。
幻读有什么问题?
—首先是语义上的。session A 在 T1 时刻就声明了,“我要把所有 d=5 的行锁住,不准别的事务进行读写操作”。
在 T1 时刻,session A 还只是给 id=5 这一行加了行锁, 并没有给 id=0 这行加上锁。因此,session B 在 T2 时刻,是可以执行这两条 update 语句的。这样,就破坏了 session A 里 Q1 语句要锁住所有 d=5 的行的加锁声明。session C 也是一样的道理,对 id=1 这一行的修改,也是破坏了 Q1 的加锁声明。
—其次,是数据一致性的问题。
经过 T1 时刻,id=5 这一行变成 (5,5,100),当然这个结果最终是在 T6 时刻正式提交的 ;经过 T2 时刻,id=0 这一行变成 (0,5,5);经过 T4 时刻,表里面多了一行 (1,5,5);其他行跟这个执行序列无关,保持不变。
再来看看这时候 binlog 里面的内容。
T2 时刻,session B 事务提交,写入了两条语句;
T4 时刻,session C 事务提交,写入了两条语句;
T6 时刻,session A 事务提交,写入了 update t set d=100 where d=5 这条语句。
也就是
update t set d=5 where id=0; /*(0,0,5)*/
update t set c=5 where id=0; /*(0,5,5)*/
insert into t values(1,1,5); /*(1,1,5)*/
update t set c=5 where id=1; /*(1,5,5)*/
update t set d=100 where d=5;/*所有d=5的行,d改成100*/
这个语句序列,不论是拿到备库去执行,还是以后用 binlog 来克隆一个库,这三行的结果,都变成了 (0,5,100)、(1,5,100) 和 (5,5,100)!!!
如何解决幻读?
产生幻读的原因是,行锁只能锁住行,但是新插入记录这个动作,要更新的是记录之间的“间隙”。因此,为了解决幻读问题,InnoDB 只好引入新的锁,也就是间隙锁 (Gap Lock)。
跟间隙锁存在冲突关系的,是“往这个间隙中插入一个记录”这个操作。间隙锁之间都不存在冲突关系。
间隙锁和行锁合称 next-key lock,每个 next-key lock 是前开后闭区间。
也就是说,我们的表 t 初始化以后,如果用 select * from t for update 要把整个表所有记录锁起来,就形成了 7 个 next-key lock,分别是 (-∞,0]、(0,5]、(5,10]、(10,15]、(15,20]、(20, 25]、(25, +supremum]。
间隙锁和 next-key lock 的引入,帮我们解决了幻读的问题,但同时也带来了一些“困扰”。
比如
begin;
select * from t where id=N for update;
/*如果行不存在*/
insert into t values(N,N,N);
/*如果行存在*/
update t set d=N set id=N;
commit;
这个逻辑一旦有并发,就会碰到死锁。
21、可重复读隔离级别 (repeatable-read) 下的加锁规则
原则 1:加锁的基本单位是 next-key lock。希望你还记得,next-key lock 是前开后闭区间。
原则 2:查找过程中访问到的对象才会加锁。
优化 1:索引上的等值查询,给唯一索引加锁的时候,next-key lock 退化为行锁。
优化 2:索引上的等值查询,向右遍历时且最后一个值不满足等值条件的时候,next-key lock 退化为间隙锁。
一个 bug:唯一索引上的范围查询会访问到不满足条件的第一个值为止。
具体案例看文章,干货满满!!!
22 实战中的问题
具体案例看文章
分库分表的原则
能不拆就不拆,能少拆就少拆
分库分表的目的
1.数据量大查询慢的问题
解决查询慢就是减少每次查询的数据量,即分表可以解决该问题
2.应对高并发的问题
一个数据库实例撑不住就分散到多个实例中去,即分库可以解决
概括就是数据量大就分表,高并发就分库.一般情况下,我们的方案都需要同时做分库分表
如何选择 sharding key?
这是分表的依据,选择要考虑的因素取决于业务如何访问数据,让查询尽量落到一个分片中。如果分片无法兼容查询,可以把数据同步到其他存储中,供查询
常见的分片算法
1.范围分片
对查询友好,适合并发量不大的场景。但容易产生热点数据
2.哈希分片
比较均匀
3.查表法
灵活,性能差因为多了一次查表
实例案例
订单表分库分表
一般按用户id分,采用哈希分片算法。为了支持按订单号查询,可以把用户id的后几位放到订单号中
23
一个事务的 binlog 是不能被拆开的,不论这个事务多大,也要确保一次性写入
参数 sync_binlog 控制binlog落盘:
sync_binlog=0 的时候,表示每次提交事务都只 write,不 fsync;
sync_binlog=1 的时候,表示每次提交事务都会执行 fsync;
sync_binlog=N(N>1) 的时候,表示每次提交事务都 write,但累积 N 个事务后才 fsync。
在出现 IO 瓶颈的场景里,将 sync_binlog 设置成一个比较大的值,可以提升性能,一般不建议将这个参数设成 0,比较常见的是将其设置为 100~1000 中的某个数值。
但是如果主机发生异常重启,会丢失最近 N 个事务的 binlog 日志。
为了控制 redo log 的写入策略,InnoDB 提供了 innodb_flush_log_at_trx_commit 参数,它有三种可能取值:
设置为 0 的时候,表示每次事务提交时都只是把 redo log 留在 redo log buffer 中 ;
设置为 1 的时候,表示每次事务提交时(事实上是在 prepare 阶段)都将 redo log 直接持久化到磁盘;
设置为 2 的时候,表示每次事务提交时都只是把 redo log 写到 page cache。
另外InnoDB 有一个后台线程,每隔 1 秒,就会把 redo log buffer 中的日志,调用 write 写到文件系统的 page cache,然后调用 fsync 持久化到磁盘。
redo log buffer 占用的空间即将达到 innodb_log_buffer_size 一半的时候,后台线程会主动写盘。
并行的事务提交的时候,顺带将这个事务的 redo log buffer 持久化到磁盘。
也就是说,一个没有提交的事务的 redo log,也是可能已经持久化到磁盘的。
每秒一次后台轮询刷盘,再加上崩溃恢复这个逻辑,InnoDB 就认为 redo log 在 commit 的时候就不需要 fsync 了,只会 write 到文件系统的 page cache 中就够了!!
如果想提升 binlog 组提交的效果,可以通过设置 binlog_group_commit_sync_delay 和 binlog_group_commit_sync_no_delay_count 来实现。
binlog_group_commit_sync_delay 参数,表示延迟多少微秒后才调用 fsync;
binlog_group_commit_sync_no_delay_count 参数,表示累积多少次以后才调用 fsync。
23 主备一致怎么保证
MySQL 主备切换流程
备库设置成只读了,还怎么跟主库保持同步更新呢?
readonly 设置对超级 (super) 权限用户是无效的,而用于同步更新的线程,就拥有超级权限。
主备流程图
备库 B 跟主库 A 之间维持了一个长连接。主库 A 内部有一个线程,专门用于服务备库 B 的这个长连接。
一个事务日志同步的完整过程是这样的:
在备库 B 上通过 change master 命令,设置主库 A 的 IP、端口、用户名、密码,以及要从哪个位置开始请求 binlog,这个位置包含文件名和日志偏移量。
在备库 B 上执行 start slave 命令,这时候备库会启动两个线程,就是图中的 io_thread 和 sql_thread。其中 io_thread 负责与主库建立连接。
主库 A 校验完用户名、密码后,开始按照备库 B 传过来的位置,从本地读取 binlog,发给 B。
备库 B 拿到 binlog 后,写到本地文件,称为中转日志(relay log)。
sql_thread 读取中转日志,解析出日志里的命令,并执行。
statement 格式 binlog 示例
使用binlog分析工具看row 格式 binlog
mysqlbinlog -vv data/master.000001 --start-position=8900;
结果如下 ,row 格式 binlog 示例
量图中,最后的 Xid,用于表示事务被正确地提交了
为什么会有 mixed 格式的 binlog?
因为有些 statement 格式的 binlog 可能会导致主备不一致,所以要使用 row 格式。
但 row 格式的缺点是,很占空间。
所以,MySQL 就取了个折中方案,也就是有了 mixed 格式的 binlog。
mixed 格式的意思是,MySQL 自己会判断这条 SQL 语句是否可能引起主备不一致,如果有可能,就用 row 格式,否则就用 statement 格式。
现在越来越多的场景要求把 MySQL 的 binlog 格式设置成 row,用于恢复数据
循环复制问题
MySQL 在 binlog 中记录了这个命令第一次执行时所在实例的 server id。因此,我们可以用下面的逻辑,来解决两个节点间的循环复制的问题:
规定两个库的 server id 必须不同,如果相同,则它们之间不能设定为主备关系;
一个备库接到 binlog 并在重放的过程中,生成与原 binlog 的 server id 相同的新的 binlog;
每个库在收到从自己的主库发过来的日志后,先判断 server id,如果跟自己的相同,表示这个日志是自己生成的,就直接丢弃这个日志。
25 怎么保证高可用?
主备延迟最直接的表现是,备库消费中转日志(relay log)的速度,比主库生产 binlog 的速度要慢。
26 主备延迟
图中黑色的两个箭头。一个箭头代表了客户端写入主库,另一箭头代表的是备库上 sql_thread 执行中转日志(relay log)
在主库上,影响并发度的原因就是各种锁了。由于 InnoDB 引擎支持行锁,除了所有并发事务都在更新同一行(热点行)这种极端场景外,它对业务并发度的支持还是很友好的
而日志在备库上的执行,就是图中备库上 sql_thread 更新数据 (DATA) 的逻辑。如果是用单线程的话,就会导致备库应用日志不够快,造成主备延迟。
5.6 版本之前,MySQL 只支持单线程复制
MySQL 多线程复制
而 work 线程的个数,就是由参数 slave_parallel_workers 决定的
coordinator 在分发的时候,需要满足以下这两个基本要求:
不能造成更新覆盖。这就要求更新同一行的两个事务,必须被分发到同一个 worker 中。
同一个事务不能被拆开,必须放到同一个 worker 中。
MariaDB 的并行复制策略
利用的是这个特性:
能够在同一组里提交的事务,一定不会修改同一行;
主库上可以并行执行的事务,备库上也一定是可以并行执行的。
MariaDB 是这么做的:
在一组里面一起提交的事务,有一个相同的 commit_id,下一组就是 commit_id+1;
commit_id 直接写到 binlog 里面;
传到备库应用的时候,相同 commit_id 的事务分发到多个 worker 执行;
这一组全部执行完成后,coordinator 再去取下一批。
MySQL 5.7 并行复制策略的思想是:
同时处于 prepare 状态的事务,在备库执行时是可以并行的;
处于 prepare 状态的事务,与处于 commit 状态的事务之间,在备库执行时也是可以并行的。
MySQL 5.7.22 的并行复制策略…
31、误删数据怎么办
误删行
使用 delete 语句误删了数据行,可以用 Flashback 工具通过闪回把数据恢复回来
Flashback 恢复数据的原理,是修改 binlog 的内容,拿回原库重放。而能够使用这个方案的前提是,需要确保 binlog_format=row 和 binlog_row_image=FULL。
具体恢复数据时,对单个事务做如下处理:
对于 insert 语句,对应的 binlog event 类型是 Write_rows event,把它改成 Delete_rows event 即可;
同理,对于 delete 语句,也是将 Delete_rows event 改为 Write_rows event;
而如果是 Update_rows 的话,binlog 里面记录了数据行修改前和修改后的值,对调这两行的位置即可。
误删库/ 表
全量备份+增量日志
延迟复制备库
延迟复制的备库是一种特殊的备库,通过 CHANGE MASTER TO MASTER_DELAY = N 命令,可以指定这个备库持续保持跟主库有 N 秒的延迟。
预防误删库/ 表的方法
1 账号分离
2 制定操作规范。比如:在删除数据表之前,必须先对表做改名操作。然后,观察一段时间,确保对业务无影响以后再删除这张表。改表名的时候,要求给表名加固定的后缀(比如加 _to_be_deleted),然后删除表的动作必须通过管理系统执行。并且,管理系删除表的时候,只能删除固定后缀的表。
40 insert语句的锁
insert … select 是很常见的在两个表之间拷贝数据的方法。你需要注意,在可重复读隔离级别下,这个语句会给 select 的表里扫描到的记录和间隙加读锁。而如果 insert 和 select 的对象是同一个表,则有可能会造成循环写入。这种情况下,我们需要引入用户临时表来做优化。insert 语句如果出现唯一键冲突,会在冲突的唯一值上加共享的 next-key lock(S 锁)。因此,碰到由于唯一键约束导致报错后,要尽快提交或回滚事务,避免加锁时间过长。
怎么在两张表中拷贝数据?
如果可以控制对源表的扫描行数和加锁范围很小的话,简单地使用 insert … select 语句即可实现。
43 分区表
CREATE TABLE `t` (
`ftime` datetime NOT NULL,
`c` int(11) DEFAULT NULL,
KEY (`ftime`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
PARTITION BY RANGE (YEAR(ftime))
(PARTITION p_2017 VALUES LESS THAN (2017) ENGINE = InnoDB,
PARTITION p_2018 VALUES LESS THAN (2018) ENGINE = InnoDB,
PARTITION p_2019 VALUES LESS THAN (2019) ENGINE = InnoDB,
PARTITION p_others VALUES LESS THAN MAXVALUE ENGINE = InnoDB);
insert into t values('2017-4-1',1),('2018-4-1',1);
对于引擎层来说,这是 4 个表;对于 Server 层来说,这是 1 个表。
分区表跟用户分表比起来,有两个绕不开的问题:一个是第一次访问的时候需要访问所有分区,另一个是共用 MDL 锁。
45 自增ID和事务ID
create table t(id int unsigned auto_increment primary key);
232-1(4294967295)不是一个特别大的数,对于一个频繁插入删除数据的表来说,是可能会被用完的。因此在建表的时候你需要考察你的表是否有可能达到这个上限,如果有可能,就应该创建成 8 个字节的 bigint unsigned。
如果你创建的 InnoDB 表没有指定主键,那么 InnoDB 会给你创建一个不可见的,长度为 6 个字节的 row_id。
在代码实现时 row_id 是一个长度为 8 字节的无符号长整型 (bigint unsigned)。
但是,InnoDB 在设计时,给 row_id 留的只是 6 个字节的长度,这样写到数据表中时只放了最后 6 个字节,所以 row_id 能写到数据表中的值,就有两个特征:
row_id 写入表中的值范围,是从 0 到 2的48次方-1;
当 dict_sys.row_id=2的48次方时,如果再有插入数据的行为要来申请 row_id,拿到以后再取最后 6 个字节的话就是 0。
当然,2的48次方-1 这个值本身已经很大了,但是如果一个 MySQL 实例跑得足够久的话,还是可能达到这个上限的。在 InnoDB 逻辑里,申请到 row_id=N 后,就将这行数据写入表中;如果表中已经存在 row_id=N 的行,新写入的行就会覆盖原有的行。
从这个角度看,我们还是应该在 InnoDB 表中主动创建自增主键。因为,表自增 id 到达上限后,再插入数据时报主键冲突错误,是更能被接受的。
Xid
Xid 在 MySQL 内部是怎么生成的呢?
MySQL 内部维护了一个全局变量 global_query_id,每次执行语句的时候将它赋值给 Query_id,然后给这个变量加 1。如果当前语句是这个事务执行的第一条语句,那么 MySQL 还会同时把 Query_id 赋值给这个事务的 Xid。
而 global_query_id 是一个纯内存变量,重启之后就清零了。所以你就知道了,在同一个数据库实例中,不同事务的 Xid 也是有可能相同的。
但是 MySQL 重启之后会重新生成新的 binlog 文件,这就保证了,同一个 binlog 文件里,Xid 一定是惟一的。
如果 global_query_id 达到上限后,就会继续从 0 开始计数。从理论上讲,还是就会出现同一个 binlog 里面出现相同 Xid 的场景。
不过,2的64次方这个值太大了,大到你可以认为这个可能性只会存在于理论上。
Innodb trx_id 事务 id
Xid 是由 server 层维护的。InnoDB 内部使用 Xid,就是为了能够在 InnoDB 事务和 server 之间做关联。但是,InnoDB 自己的 trx_id,是另外维护的。
InnoDB 内部维护了一个 max_trx_id 全局变量,每次需要申请一个新的 trx_id 时,就获得 max_trx_id 的当前值,然后并将 max_trx_id 加 1。
只读事务不分配 trx_id:一个好处是,这样做可以减小事务视图里面活跃事务数组的大小,可以减少 trx_id 的申请次数
max_trx_id 会持久化存储,重启也不会重置为 0,那么从理论上讲,只要一个 MySQL 服务跑得足够久,就可能出现 max_trx_id 达到 248-1 的上限,然后从 0 开始的情况。
当达到这个状态后,MySQL 就会持续出现一个脏读的 bug。
thread_id
系统保存了一个全局变量 thread_id_counter,每新建一个连接,就将 thread_id_counter 赋值给这个新连接的线程变量。
thread_id_counter 定义的大小是 4 个字节,因此达到 232-1 后,它就会重置为 0,然后继续增加。但是,你不会在 show processlist 里看到两个相同的 thread_id。