FPKM、RPKM、TPM还在傻傻分不清?

FPKM:Fragments Per Kilobase of exon model per Million mapped fragments(每千个碱基的转录每百万映射读取的fragments)
RPKM:Reads Per Kilobase of exon model per Million mapped reads (每千个碱基的转录每百万映射读取的reads)
TPM:Transcripts Per Kilobase of exon model per Million mapped reads (每千个碱基的转录每百万映射读取的Transcripts)

Reads和Fragments的区别

Reads即是指下机后fastq数据中的每一条Reads,Fragments则是指每一段用于测序的核酸片段,在单端测序中,一个Fragments只测一条Reads,所以,Reads数与Fragments数目相等;在双端测序中,一个Fragments测两端,会得到2条Reads,但由于后期质量或比对的过滤,有可能一个Fragments的2条Reads最后只有一条进入最后的表达量分析。总之,对某一对Reads而言,这2条Reads只能算一个Fragments,所以Fragments的最终数目是Reads的1到2倍之间。

为什么要进行标准化分析?

在RNA-Seq的分析中,为了获得差异表达基因,只需要对不同基因的测序Read数进行比较即可。然而比对到不同基因上的Read数目并不能直接用于比较这两个基因的表达量差异,因为在RNA-seq中有一个很浅显的道理,基因越长,比对到此基因上的Read就会越多;测序深度越大,那么本次RNA-seq的所有Read数都会增加。也就是说Read数除了和基因表达量相关外,也和基因的长度、测序深度有关,因此为了比较多个RNA-seq重复(测序深度有一定差异)的不同基因(基因长度有一定差异)之间的表达量差异,那么就不能使用Read数直接进行比较,而是需要对Read数进行标准化。

受到基因长度影响,那么将测序Read数除以基因长度;受到测序深度影响,那么再将Read数除以总Read数进行标准化也就消除了测序深度的影响。

基因长度是用 kb表示的,所以RPKM中是K,Kilobase。而总Read数太大了,直接除以这个数字就会使得标准化出来的Read数出现太多的小数,所以为了美观,一般都是除以以百万为单位的总Read数。

RPKM

RPKM = total exon reads/ (mapped reads (Millions) * exon length(KB))

total exon reads:某个样本mapping到 特定基因 的外显子上的所有的reads;

mapped reads (Millions) :某个样本的 所有 reads总和;

exon length(KB):某个基因的长度(外显子的长度的总和,以KB为单位);

例子

假定有以下RNA-seq数据,测定了A、B、C、D四个基因,长度分别是2、4、1、10kb,共测定了3个生物重复:Rep1、Rep2、Rep3。
第一步:计算总Read数
只有4个基因,所以总Read数并没有太大,因此使用10模拟百万进行总read换算


第二步:标准化总Read数
将Rep1、Rep2、Rep3除以各自换算后的总Read数(也就是3.5,4.5,10.6),得到RPM

第三步:标准化基因长度
再将基因A、B、C、D的RPM值除以各自的基因长度,得到RPKM

FPKM

FPKM同RPKM是一样的,只是RPKM用于单末端测序,而FPKM用于双末端测序。

二代测序时,会将所有的DNA打成片段(fragment),然后再去测序。单末端测序时,一个片段对应一个Read,但是双末端测序时,一个片段会从两端分别测定一次,因此这两个配对Read对应的是同一片段(偶尔也会有一个片段只对应一个Read的情况,另一个Read因为某些原因被剔除或丢失了)。

区别也就在这里,对于FPKM来说,配对到同一片段上的两个Read只会算作一个Read,也就是说FPKM是以Fragment为准,不以Read数为准,其他计算方式是完全一样的。

TPM

TPM的计算方法同RPKM很类似,同样的对基因长度和测序深度进行标准化,只不过RPKM是先进行测序深度标准化,后进行基因长度标准化;而 TPM是先进行基因长度标准化,后进行测序深度标准化。事实证明,TPM的标准化方法更有优势。

例子

第一步:进行基因长度标准化
先将基因A、B、C、D的Read数除以各自的基因长度(基因长度单位kb),得到RPK。


第二歩:计算总Read数(RPK)
计算总Read数,并将其进行百万转换,这里是使用10模拟百万转换。由于TPM先进行基因长度标准化,所以这里的总Read数计算已经变为基因长度标准化后的Read数,也就是RPK数。

第三步:进行总Read数标准化
将Rep1、Rep2、Rep3的RPK除以各自的转换后的总Read数,得到TPM值。

TPM相比较RPKM、FPKM的优势

将每个转录本的相应RPKM和TPM值进行加总后,可以发现不同转录本的总RPKM并不相同,而进行TPM变换后的加总TPM值是相同的。事实上所有进行TPM变换后的转录本的加总TPM值都是相同的(正常情况下,是百万)。


由于RNA-seq就是为了通过比较不同样本间的标准化后的Read数差异来得出基因表达量差异的结果,那么不同样本的加总RPKM不同,就会导致无法通过直接比较RPKM值确定两者的差异。

举例来说,在不考虑统计差异的情况下,以基因A为例,Rep1的RPKM值为1.43,Rep3的RPKM值是1.42,那么能说基因A在Rep1中的表达量大于Rep3中的表达量吗?

答案是不能,因为Rep1的总RPKM值是4.29,而Rep3的总RPKM值是4.25,虽然Rep1中基因A的RPKM大,但是Rep1的总RPKM值也是较大的(说白了,RPKM的测序深度标准化并不完善)。

而对于TPM数据就不同了,由于总TPM都是相同的,Rep1中基因A的TPM值3.33大于Rep3中基因A的TPM值3.326,所以在不考虑统计学差异的情况下,可以直接得出Rep1中基因A的表达量是要大于Rep3的。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,001评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,210评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,874评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,001评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,022评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,005评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,929评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,742评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,193评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,427评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,583评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,305评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,911评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,564评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,731评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,581评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,478评论 2 352

推荐阅读更多精彩内容