Final Project

Since we have learned some Random Walk theory in Statistical Physics, I chose this Chapter for my final project.

                                   

                                 Random Walk

Abstract

  In this project, I use the Random number generator for simulating the random walk.Every random system has a complicated trajectory, and it can be seen as a typical "Random Walk" in every direction. This is a progress in which "a walker" moves one step or none at a time.Hence, we can use this simple model to higher-dimension random system, such as diffusion.

Background
random phenomena

A random walk is a mathematical object which describes a path that consists of a succession of random steps. For example, the path traced by a molecule as it travels in a liquid or a gas, the search path of a foraging animal, superstring behavior, the price of a fluctuating stock and the financial status of a gambler can all be approximated by random walk models, even though they may not be truly random in reality. Random walks explain the observed behaviors of many processes in these fields, and thus serve as a fundamental model for the recorded stochastic activity.


Main Body

Diffusion is the net movement of molecules or atoms from a region of high concentration (or high chemical potential) to a region of low concentration (or low chemical potential).

1 Simple random walk

The simplest situation involves a walker that is able to take steps of length unity along a line. With the same probability of 1/2, we can see the distance will stay around 0 as thefigure shows .below.

Here is the code


Actually, since the random number is not always the same, we can get a little difference in twice simulation.That's the  fluctuation in statistical physics.

In diffusion situation, there is an interesting and informative quantity is <x^2>,the averange of the square of the displacement after n steps.We can discribe it as

where t is the time,  which here is just equal to the step number; and D is known as the diffusion constant.The simulation below can show the linear relation between <x^2> and t

Here is the code


2 Typical example:Diffusion

   As we metioned, random walks are equivalent to diffusion.We have

In one dimensional situation, we can approach this function as


Then we can set the initial parameters and use the progressive relationship to simulate the relation between density and time.

Here is the code

In the gif,we can see the every step change.


After the process, we can set the time to get a final result/

and we can see it in the three dimensional way

Actually, the density follows the function

where the "sigma" is "time" dependent It's a kind of Gaussian distribution, the simulation is corresponding with this function. We can see  that when time becomes longer the  curve will become wider and placid. That's consistent with theoretical  situation.

Additional: entropy

When a sugar resolves in a cup of water, we can see the diffusion process as a random phenomena.


As we can see, when time increases, the entropy value increases, but its growth speed is reduced. Eventually it will converge to a constant value.

Conclusion

For such equal possibility random walk, through simulation, we can find that the averange of  a random behavior is around zero.And the square of x is linear to t with equal probability.

About the relationship between density and time, when time becomes longer the  curve will become wider and placid.

As for entropy, the the entropy value increases, but its growth speed is reduced. Eventually it will converge to a constant value.

Acknowledgement

python画三维图的方法

matplotlib使用教程、和用python画动图的animation

制作GIF的抠抠视频秀

热统教材 statistical and thermal physics 以及本课程教材 computational physics

非常感谢蔡老师这种网络共享的作业方式,我作为一个基本不会编程语言的学生,通过一学期的学习和观看借鉴其他同学的代码,应该算对python这种语言初步有了了解,希望这种方式可以一直延续下去。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,875评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,569评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,475评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,459评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,537评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,563评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,580评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,326评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,773评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,086评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,252评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,921评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,566评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,190评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,435评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,129评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,125评论 2 352

推荐阅读更多精彩内容