监督学习——学习笔记

前言

统计学习包括监督学习、非监督学习、半监督学习及强化学习。
监督学习 (supervised learning) 的任务是学习一个模型,使模型能够对任意给定的输入,对其相应的输出做出一个好的预测。

基本概念

  • 输入空间(input space):可以是有限元素的集合,也可以是整个欧氏空间。通常来说输出空间远小于输入空间

  • 特征空间 ( feature space) :特征空间的每一维对应于一个特征。有时假设输入空间与特征空间为相同空间,对它们不予以区分。有时输入空间与特征空间为不同空间,将实例从输入空间映射到特征空间。模型是定义在特征空间上的。

  • 输出空间 (output space) :模型根据特征空间输出的空间。

  • 样本 :输入和输出对的集合。

  • 回归问题 :输入和输出变量均为连续变量。

  • 分类问题 :输入连续,输出有限离散。

  • 标注间题 : 输入与输出均有限离散。


  • 联合概率分布 : 输入与输出共同出现的概率。X和Y具有联合概率分布的假设就是监督学习关于数据的基本假设。简而言之,X和Y要有一定的概率关系,监督学习才能成立。

  • 假设空间 (hypothesis space):学习的目的就在于找到最好的模型来映射X和Y。假设空间的确定意味着学习范围的确定。模型可以是概率模型,也可以是非概率模型。可以写作P(y|x) 或 y = f(x)。

问题的形式化

监督学习利用训练数据集学习一个模型,再用模型对测试样本集进行预测,由于在这个过程中需要训练数据集,而训练数据集往往是人工给出的,所以称为监督学习。

监督学习分为学习和预测两个过程。

  1. 给定一个训练数据集T{(x1,y1),(x2,y2),...,(xn,yn)}
  2. 假设训练数据与测试数据是依联合概率分布P(X,Y)独立同分布产生的
  3. 在学习过程中,学习系统利用给定的训练数据庥,通过学习得到一个模型,P(Y|X)或Y = f(X)
  4. 在预测过程中Y = arg maxP(Y|X)或Y = f(X)
  5. 学习过程中,对于一个有预测能力的模型。我们输入一个x,获得一个f(x),如果它与y之间的差的绝对值就应该足够小。学习过程就是通过不断地尝试,选取最好的模型。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351

推荐阅读更多精彩内容