腾讯AI Lab获得计算机视觉权威赛事MSCOCO Captions冠军

姓名:王正帅

学号:14020120007

转载自:mp.weixin.qq.com/s ,有删节

【嵌牛导读】:2017 年 8 月,在图像描述生成技术这一热门的计算机视觉与 NLP 交叉研究领域,腾讯 AI Lab 凭借自主研发的强化学习算法在微软 MS COCO 相关的 Image Captioning 任务上排名第一,超过了微软、谷歌、IBM 等参赛公司,体现了在这一 AI 前沿领域的技术优势。

【嵌牛鼻子】:图像描述生成技术、计算机视觉与 NLP、腾讯 AI Lab

【嵌牛提问】:图像描述生成技术的原理和应用是什么?腾讯 AI Lab做了哪些工作?

【嵌牛正文】:

MS COCO (Microsoft Common Objects in Context,常见物体图像识别) 数据集(http://cocodataset.org/)是由微软发布并维护的图像数据集。在这个数据集上,共有物体检测 (Detection)、人体关键点检测 (Keypoints)、图像分割 (Stuff)、图像描述生成 (Captions) 四个类别的比赛任务。由于这些视觉任务是计算机视觉领域当前最受关注和最有代表性的,MS COCO 成为了图像理解与分析方向最重要的标杆之一。其中图像描述生成任务 (Captions),需要同时对图像与文本进行深度的理解与分析,相比其他三个任务更具有挑战性,因此也吸引了更多的工业界(Google,IBM,Microsoft)以及国际顶尖院校(UC Berkeley、Stanford University)的参赛队伍,迄今共有 80 个队伍参与这项比赛。

通俗来说,图像描述生成(image captioning)研究的是使机器拥有人类理解图像的能力,并用人类语言描述感知到的图像内容。图像描述生成使得机器可以帮助有视觉障碍的人来理解图像,给图像提供除了标签(tag)以外更加丰富的描述,因此这项任务具有广泛的实际意义。从学术研究的角度来说,图像描述生成的研究不仅仅需要理解图像,更需要理解自然语言,是一个跨学科跨模态的交叉研究课题,也是对深度神经网络的学习能力向多个数据域扩展的一步重要的探索。因此,众多科技企业和科研机构参与了此任务,包括 Google [1][3]、Microsoft [5]、IBM [2]、Snapchat [4]、Montreal/Toronto University [6]、UC Berkeley [7]、 Stanford University [8]、百度 [9] 等。


最近,腾讯 AI Lab 研发了新的强化学习算法(Reinforcement Learning)以进一步提高图像描述生成的模型能力,如上图所示。相应的图像描述生成模型,采用了编码器-解码器(encoder-decoder)[1] 的框架,同时引入了注意力(attention)的机制 [3]。基于之前研究的空间和通道注意力模型(spatial and channel-wise attention)[10] 的研究成果, AI Lab 构建了新网络模型引入了一个多阶段的注意力机制(Multi-stage Attention)。编码器,使用已有的图像卷积神经网络(CNN)如 VGG,Inception,ResNet 等,将给定的图像编码成为蕴含图像语义信息的向量。这些向量能够表征图像不同尺度的语义信息,譬如全局的语义、多尺度的局部语义。解码器,使用当前最流行的长短时记忆模型(LSTM),将编码器得到的图像的全局和局部语义向量,解码生成描述图像内容的文本语句。正是在解码的过程中,AI Lab 创新性地使用了多阶段的注意力机制:将图像不同尺度的局部语义信息,通过不同阶段的注意力模块,嵌入到每一个单词的生成过程中;同时注意力模块需要考虑不同尺度引入的不同阶段的注意力信号强弱。

除了引入多阶段的注意力机制,AI Lab 所研发的强化学习算法能进一步提升构建的网络模型的训练效果。使用传统的交叉熵(cross entropy)作为损失函数进行训练,无法充分地优化图像描述生成的衡量指标,譬如 BLEU,METEOR,ROUGE,CIDER,SPICE 等。这些衡量指标作为损失函数都是不可微的。针对此不可微的问题,AI Lab 使用强化学习算法训练网络模型以优化这些衡量指标。训练过程可概括为:给定一副图像,通过深度网络模型产生相应的语句,将相应的语句与标注语句比对以计算相应的衡量指标;使用强化学习构建深度网络模型的梯度信息,执行梯度下降完成网络的最终优化。最终,通过充分的训练,腾讯 AI Lab 研发的图像描述生成模型在微软 MS COCO 的 Captions 任务上排名第一,超过了微软、谷歌、IBM 等科技公司。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,607评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,239评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,960评论 0 355
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,750评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,764评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,604评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,347评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,253评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,702评论 1 315
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,893评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,015评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,734评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,352评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,934评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,052评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,216评论 3 371
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,969评论 2 355

推荐阅读更多精彩内容