「自然语言处理(NLP)」神经机器翻译(NMT)论文整理(一)

来源: AINLPer 微信公众号(每日更新...
编辑: ShuYini
校稿: ShuYini
时间: 2020-02-27

引言:下面是作者整理的关于神经机器翻译(NMT)相关的论文文章,下面这10篇文章都顶会ICLR发表的文章,能找到源码的作者也直接贴出来了,如果你对NMT感兴趣或者也在找一些相关的文章,希望能够帮助你~~

TILE: Multilingual Neural Machine Translation with Knowledge Distillation
Author: Xu Tan, Yi Ren, Di He, Tao Qin, Zhou Zhao, Tie-Yan Liu
Paper:https://openreview.net/pdf?id=S1gUsoR9YX
Code: None
论文简述:多语言机器翻译以其离线训练和在线服务的效率而备受关注。然而,由于语言多样性和模型容量的限制,传统的多语言翻译通常会产生较低的准确性。在本文提出了一种基于提取的方法来提高多语言机器翻译的准确性。


TILE: Mirror-Generative Neural Machine Translation
Author: Zaixiang Zheng, Hao Zhou, Shujian Huang, Lei Li, Xin-Yu Dai, Jiajun Chen
Paper:https://openreview.net/pdf?id=HkxQRTNYPH
Code: None
论文简述:本文提出了镜像生成NMT架构 ,这是一个单一的统一架构,同时集成了源到目标翻译模型、目标到源翻译模型和两种语言模型。



TILE: Multi-Agent Dual Learning
Author: Yiren Wang, Yingce Xia, Tianyu He, Fei Tian, Tao Qin, ChengXiang Zhai, Tie-Yan Liu
Paper:https://openreview.net/pdf?id=HyGhN2A5tm
Code: None
论文简述: 现有的二元学习框架形成了一个包含两个主体(一个原始模型和一个二元模型)的系统来利用这种二元性。本文通过引入多个原模型和对偶模型对该框架进行了扩展,提出了多智能体对偶学习框架。在神经机器翻译和图像翻译任务上的实验证明了该框架的有效性。


TILE: Multilingual Neural Machine Translation With Soft Decoupled Encoding
Author: Xinyi Wang, Hieu Pham, Philip Arthur, Graham Neubig.
Paper:https://openreview.net/pdf?id=Skeke3C5Fm
Code: None
论文简述:神经机器翻译(NMT)系统的多语言训练在低资源语言上带来了令人印象深刻的准确性改进。然而,在数据缺乏的情况下,有效地学习单词表示仍然面临着巨大的挑战。在本文中,我们提出了软解耦编码(SDE),这是一种多语言词汇编码框架,专门设计来智能地共享词汇级别的信息,而不需要预先分割数据等启发式预处理。


42.png

TILE: Von Mises-Fisher Loss for Training Sequence to Sequence Models with Continuous Outputs
Author:Sachin Kumar, Yulia Tsvetkov
Paper: https://openreview.net/pdf?id=rJlDnoA5Y7
Code: None
论文简述: Softmax函数用于几乎所有现有的用于语言生成的序列到序列模型的最后一层。然而,它通常是计算最慢的一层,将词汇表大小限制为最频繁类型的子集;它有很大的内存占用。为此本文提出了一种用连续嵌入层替换softmax层的通用技术。



TILE: Unsupervised Machine Translation Using Monolingual Corpora Only
Author:Guillaume Lample, Alexis Conneau, Ludovic Denoyer, Marc'Aurelio Ranzato.
Paper:https://openreview.net/pdf?id=rkYTTf-AZ
Code: None
论文简述: 提出了一种从两种不同语言的单语语料库中提取句子并将其映射到同一潜在空间的模型。通过学习从共享的特征空间中重构两种语言,该模型有效地学习了不使用任何标记数据的翻译。

TILE: Unsupervised Neural Machine Translation.
Author:Mikel Artetxe, Gorka Labaka, Eneko Agirre, Kyunghyun Cho。
Paper:https://openreview.net/pdf?id=Sy2ogebAW
Code: None
论文简述: 针对神经机器翻译(NMT)本文完全消除了并行数据的需要,并提出了一种新的方法,以完全无监督的方式,仅依靠单语语料库来训练一个NMT系统。我们的模型建立在最近关于无监督嵌入映射的工作上,并由一个稍微修改过的注意力编译码器模型组成,该模型可以单独在单语语料库上使用去噪和反向翻译的组合进行训练。


TILE: Towards Neural Phrase-based Machine Translation.
Author:Po-Sen Huang, Chong Wang, Sitao Huang, Dengyong Zhou, Li Deng.
Paper:https://openreview.net/pdf?id=HktJec1RZ
Code: None
论文简述: 本文提出了一种基于神经短语的机器翻译方法。该方法使用最近提出的基于分段的序列建模方法Sleep-WAke Networks (SWAN)对输出序列中的短语结构进行了显式建模。


TILE: Word translation without parallel data
Author: Guillaume Lample, Alexis Conneau, Marc'Aurelio Ranzato, Ludovic Denoyer, Hervé Jégou
Paper:https://openreview.net/pdf?id=H196sainb
Code: https://github.com/facebookresearch/MUSE
论文简述: 学习跨语言单词嵌入的最新方法依赖于双语词典或平行语料库。本文证明,可以在两种语言之间建立一个双语词典,而无需使用任何平行语料库,通过以无监督的方式对齐单语单词嵌入空间。在不使用任何字符信息的情况下,我们的模型甚至在一些语言对的跨语言任务上优于现有的监督方法。

TILE: Non-Autoregressive Neural Machine Translation.
Author:Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K. Li, Richard Socher.
Paper: https://openreview.net/pdf?id=B1l8BtlCb
Code: None
论文简述:现有的神经机器翻译方法将每个输出字置于先前生成的输出之上。本文引入了一个模型,该模型避免了这种自回归特性,而是并行地生成其输出,从而允许在推理期间降低一个数量级的延迟。



Attention

更多自然语言处理相关知识,还请关注AINLPer公众号,极品干货即刻送达。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,463评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,868评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,213评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,666评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,759评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,725评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,716评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,484评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,928评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,233评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,393评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,073评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,718评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,308评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,538评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,338评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,260评论 2 352

推荐阅读更多精彩内容