认识AI对话产品(六)

今天先补一下漏掉的术语解释。

之前在(一)里面有简单介绍过对话涉及的技术调用流程。不知道可以翻一下之前的文章。


1、NLU (Natural Language Understanding,):俗称人机对话,是所有支持机器理解文本内容的方法模型或任务的总称。NLU在文本信息处理处理系统中扮演着非常重要的角色,是推荐、问答、搜索等系统的必备模块;实现人机间自然语言通信意味着要使计算机既能理解自然语言文本的意义,也能以自然语言文本来表达给定的意图、思想等。前者称为自然语言理解,后者称为自然语言生成。

2. ASR ( Automatic Speech Recognition):语音识别,这是一个语音能力,做ai对话只需要关注效果、优化方法以及性能和资源需求,不需要过多的深入学习和理解

3. TTS text to speech:文本合成音频,在对话中,主要负责将机器人回答的文本进行合成播报给用户,完成一个交互,同样的,只需要关注效果、优化方法以及性能和资源需求,不需要过多的深入学习和理解

4. NLP:natural language process:自然语言处理,自然语言处理体包括了自然语言理解和自然语言生成两个部分;所以在很多公司里,nlu和nlp并不会有明确的区分,常常统称为nlp;然而实际上,nlp除了做对话、还能做ner(命名实体识别)、聚类、分类等做文本处理的任务可以用来做分析;

5. QA(FAQ):问答中的一问一答,在之前的文章里,我从是否需要多轮以及多轮的复杂度把对话场景分成了三种(qa、意图、多轮);这种用来处理最基本最简单的有非常明确答案的问题;

6. 意图:简单的填槽类问答:如订高铁票,对应的必须信息包含时间、起点终点、票类型等,这些通过追问和反问获得槽位信息,最终完成任务;

7. 多轮:更加复杂需要更多信息的问答,可以提供反悔、特殊情况兜底等;如办理账单分期业务;

8. 图谱问答分成两种:传统的二维表、真正的图谱问答;二维表是一种非常简化的三元组;图谱问答是为了解决传统知识库加工过于复杂且加工量过大的问题,当然图谱对于领域问答的实际落地效果以及降本效果;图谱问答也是结合NER、qa进行问答;



明天接着写

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,634评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,951评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,427评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,770评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,835评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,799评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,768评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,544评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,979评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,271评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,427评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,121评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,756评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,375评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,579评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,410评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,315评论 2 352

推荐阅读更多精彩内容