神经网络加速器

转自:https://cloud.tencent.com/developer/article/1192162

人工智能和机器学习(ML)的应用是嵌入式处理器的下一个巨大市场机遇。 然而, 传统的处理解决方案并不是为了计算神经网络的工作负载, 而这些工作负荷是许多应用动力基础, 因此需要新的架构来满足不断增长的智能需求。

随着数以十亿计的连接传感器节点被部署在物联网上, 有一件事已经变得清晰起来: 自动化无处不在。 考虑到物联网系统的天然特点, 许多物联网系统具有重要的经济、生产力和安全意义, 这种需求超越了简单规则引擎或程序设计阈值的使用。 从而, 业界已经转向人工智能和机器学习。

如今的许多人工智能和机器学习应用都依赖于人工神经网络, 人工神经网络是一系列算法,这些算法对不同层面的数据集来定义特性,进而组织成一系列结构化层次。 这些网络最初是建立在高性能计算平台上的, 这些平台使算法根据特定的参数做出决策或预测。 然后对该算法进行优化, 并将其移植到嵌入的目标中, 并根据在该领域收到的输入数据进行推理。

不同的嵌入式处理解决方案根据具体应用程序来执行神经网络算法, 这给 AI 和 ML 开发者留下了一系列可供选择项。 但是, 正如Linely Group的高级分析师、"A Guide to Processors for Deep Learning"一书的合著者 Mike Demler 所说的那样, 这些方案在权力、性能和成本方面都有权衡。

他说,"根本就没有一种嵌入式的 AI 处理器。神经网络引擎可能使用 cpu, dsp,gpu, 或者专门的深度学习加速器, 或者组合。"

"趋势肯定是引入 cpu、 gpu 和 dsp 的加速器, 原因是它们比其他通用核更具有多领域和低功耗应用能力。 随着标准的开放式深度学习框架的使用, 如 Caffe 和 TensorFlow 的增加, 以及像 GoogleNet 和 ResNet 这样随时可用的开源网络, IP 供应商更容易设计专门用于运行各种神经网络层的硬件。 这就是为什么许多加速器不断增加越来越大的乘数累加器阵列, 因为神经网络中的大部分计算都是 MAC。"

人工智能工作负载的新型架构

对于神经网络工作负载的 IP 供应商而言,一个主要侧重点是灵活性, 这样才能针对不断变化的人工智能市场的需求。 这方面的一个例子可以在 CEVA 最近发布的 NeuPro AI 处理器架构中找到, 该架构包括一个完全可编程的矢量处理单元(VPU) , 以及矩阵乘法和计算激活、池、卷积和完全连接的神经网络层(图1)。

图1

处理神经网络工作负载的一个共同挑战是对内存进行大型数据集交换。 为了克服这个问题, NeuPro 体系结构采用了直接存储控制器(DMA) , 以提高 DDR 带宽的利用率。

其中一个更有趣的特性是能够动态地调整解析精度, 以适应各个网络层的精确要求。 根据 CEVA 成像和计算机视觉产品营销总监 Liran Bar 的说法, 这有助于最大限度地提高神经网络推理的准确性。

"并不是所有的图层都需要同样的精度。 事实上, 许多商业神经网络需要16位分辨率来保持高精度, 但同时8位对于某些层来说已经足够了,"巴尔说。 "NeuPro 提前确定每一个8位或16位层的精度, 以便充分灵活性。 例如, 当使用 NP4000产品时, 允许在运行时动态选择40008x8,204816x8或102416x16 MACs。"

在Imagination Technologies的 PowerVR Series2NX 中也有类似的功能, 这是一个神经网络加速器(NNA) , 其本地支持深度为4位。 Powervr Series2NX 采用动态缩放到极端, 但是, 支持4-, 5-, 6-, 7-, 8-, 10-, 12-, 和16位分辨率的相同核心的更高精度(图2)。

图2

"人们可以把 NNA 架构看作是张量处理管道,"Imagination Technologies 公司 Vision 和 AI 副总裁罗素 · 詹姆斯说。 "它有一个针对大张量(输入数据和权重)快速卷积优化了的神经网络计算引擎, 辅之以各种其他单元的表现元素和张量操作, 如激活、汇集和规范化。 该体系结构还使用了一个优化的数据库, 可以将操作分组成传递, 从而最小化外部内存访问。"

换格式的能力, 这使得异构系统在神经网络处理中占据了先机。 Imagination Technologies提供了一个网络开发工具包(NDK) , 用于评估核, 其中包含将神经网络映射到 NNA 的工具, 调整网络模型, 以及转换在诸如 Caffe 和 TensorFlow 等框架中开发的网络。

神经网络处理: 全员参与

除了IP供应商, 大型芯片制造商也继续充分利用人工智能的工作负载。 NVIDIA Tegra 和 Xavier SoCs 将 CPU、 GPU 和自主驾驶系统的自定义深度学习加速器结合在一起, 而高通公司则继续在 Hexagon DSP 中构建机器学习功能。 就英特尔而言, 他们已经进行了长达18个月的疯狂采购, 收购了 Mobileye、 Movidius 和神经网络技术, 为各个市场开发神经网络技术。 甚至谷歌(Google)也创建了一个 TPU 。

这些公司都采用了不同的方法来处理神经网络工作负载, 每个架构处理的使用场景略有不同。 当开发者涉及到人工智能的时候, 当然是选择越多越好了。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,558评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,002评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,024评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,144评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,255评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,295评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,068评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,478评论 1 305
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,789评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,965评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,649评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,267评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,982评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,800评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,847评论 2 351

推荐阅读更多精彩内容