[TensorFolow]函数: tf.nn.conv2d

  def conv2d(input, filter, strides, padding, use_cudnn_on_gpu=True, data_format="NHWC", name=None):

r"""Computes a 2-D convolution given 4-D input and filter tensors.

Given an input tensor of shape [batch, in_height, in_width, in_channels]
and a filter / kernel tensor of shape
[filter_height, filter_width, in_channels, out_channels], this op
performs the following:

  1. Flattens the filter to a 2-D matrix with shape
    [filter_height * filter_width * in_channels, output_channels].
  2. Extracts image patches from the input tensor to form a virtual
    tensor of shape [batch, out_height, out_width, filter_height * filter_width * in_channels].
  3. For each patch, right-multiplies the filter matrix and the image patch
    vector.

In detail, with the default NHWC format,

  output[b, i, j, k] =
      sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] *
                      filter[di, dj, q, k]

Must have strides[0] = strides[3] = 1. For the most common case of the same
horizontal and vertices strides, strides = [1, stride, stride, 1].

Args:
input: A Tensor. Must be one of the following types: half, float32.
A 4-D tensor. The dimension order is interpreted according to the value
of data_format, see below for details.
filter: A Tensor. Must have the same type as input.
A 4-D tensor of shape
[filter_height, filter_width, in_channels, out_channels]
strides: A list of ints.
1-D tensor of length 4. The stride of the sliding window for each
dimension of input. The dimension order is determined by the value of
data_format, see below for details.
padding: A string from: "SAME", "VALID".
The type of padding algorithm to use.
use_cudnn_on_gpu: An optional bool. Defaults to True.
data_format: An optional string from: "NHWC", "NCHW". Defaults to "NHWC".
Specify the data format of the input and output data. With the
default format "NHWC", the data is stored in the order of:
[batch, height, width, channels].
Alternatively, the format could be "NCHW", the data storage order of:
[batch, channels, height, width].
name: A name for the operation (optional).

Returns:
A Tensor. Has the same type as input.
A 4-D tensor. The dimension order is determined by the value of
data_format, see below for details.
"""

  if not isinstance(strides, (list, tuple)):
    raise TypeError(
        "Expected list for 'strides' argument to "
        "'conv2d' Op, not %r." % strides)
  strides = [_execute.make_int(_i, "strides") for _i in strides]
  padding = _execute.make_str(padding, "padding")
  if use_cudnn_on_gpu is None:
    use_cudnn_on_gpu = True
  use_cudnn_on_gpu = _execute.make_bool(use_cudnn_on_gpu, "use_cudnn_on_gpu")
  if data_format is None:
    data_format = "NHWC"
  data_format = _execute.make_str(data_format, "data_format")
  _ctx = _context.context()
  if _ctx.in_graph_mode():
    _, _, _op = _op_def_lib._apply_op_helper(
        "Conv2D", input=input, filter=filter, strides=strides,
        padding=padding, use_cudnn_on_gpu=use_cudnn_on_gpu,
        data_format=data_format, name=name)
    _result = _op.outputs[:]
    _inputs_flat = _op.inputs
    _attrs = ("T", _op.get_attr("T"), "strides", _op.get_attr("strides"),
              "use_cudnn_on_gpu", _op.get_attr("use_cudnn_on_gpu"), "padding",
              _op.get_attr("padding"), "data_format",
              _op.get_attr("data_format"))
  else:
    _attr_T, _inputs_T = _execute.args_to_matching_eager([input, filter], _ctx)
    (input, filter) = _inputs_T
    _attr_T = _attr_T.as_datatype_enum
    _inputs_flat = [input, filter]
    _attrs = ("T", _attr_T, "strides", strides, "use_cudnn_on_gpu",
              use_cudnn_on_gpu, "padding", padding, "data_format",
              data_format)
    _result = _execute.execute(b"Conv2D", 1, inputs=_inputs_flat,
                               attrs=_attrs, ctx=_ctx, name=name)
  _execute.record_gradient(
      "Conv2D", _inputs_flat, _attrs, _result, name)
  _result, = _result
  return _result

注意函数的几个参数
每个参数的shape均不相同
最终返回Returns:
A Tensor. Has the same type as input.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,084评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,623评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,450评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,322评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,370评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,274评论 1 300
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,126评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,980评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,414评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,599评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,773评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,470评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,080评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,713评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,852评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,865评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,689评论 2 354

推荐阅读更多精彩内容