深度学习Course2 Gradient Checking作业

Exercise: implement "forward propagation" and "backward propagation" for this simple function. I.e., compute both 𝐽(.)J(.) ("forward propagation") and its derivative with respect to 𝜃θ ("backward propagation"), in two separate functions.

In[13]:

# GRADED FUNCTION: forward_propagation

def forward_propagation(x,theta):

"""

    Implement the linear forward propagation (compute J) presented in Figure 1 (J(theta) = theta * x)


    Arguments:

    x -- a real-valued input

    theta -- our parameter, a real number as well


    Returns:

    J -- the value of function J, computed using the formula J(theta) = theta * x

    """


### START CODE HERE ### (approx. 1 line)

J=theta*x

### END CODE HERE ###


returnJ

In[14]:

x,theta=2,4

J=forward_propagation(x,theta)

print("J = "+str(J))

J = 8

Expected Output:

** J **8

Exercise: Now, implement the backward propagation step (derivative computation) of Figure 1. That is, compute the derivative of 𝐽(𝜃)=𝜃𝑥J(θ)=θx with respect to 𝜃θ. To save you from doing the calculus, you should get 𝑑𝑡ℎ𝑒𝑡𝑎=∂𝐽∂𝜃=𝑥dtheta=∂J∂θ=x.

In[15]:

# GRADED FUNCTION: backward_propagation

defbackward_propagation(x,theta):

"""

    Computes the derivative of J with respect to theta (see Figure 1).


    Arguments:

    x -- a real-valued input

    theta -- our parameter, a real number as well


    Returns:

    dtheta -- the gradient of the cost with respect to theta

    """


### START CODE HERE ### (approx. 1 line)

dtheta=x

### END CODE HERE ###


returndtheta

In[16]:

x,theta=2,4

dtheta=backward_propagation(x,theta)

print("dtheta = "+str(dtheta))

dtheta = 2

Expected Output:

** dtheta **2

Exercise: To show that the backward_propagation() function is correctly computing the gradient ∂𝐽∂𝜃∂J∂θ, let's implement gradient checking.

Instructions:

First compute "gradapprox" using the formula above (1) and a small value of 𝜀ε. Here are the Steps to follow:

𝜃+=𝜃+𝜀θ+=θ+ε

𝜃−=𝜃−𝜀θ−=θ−ε

𝐽+=𝐽(𝜃+)J+=J(θ+)

𝐽−=𝐽(𝜃−)J−=J(θ−)

𝑔𝑟𝑎𝑑𝑎𝑝𝑝𝑟𝑜𝑥=𝐽+−𝐽−2𝜀gradapprox=J+−J−2ε

Then compute the gradient using backward propagation, and store the result in a variable "grad"

Finally, compute the relative difference between "gradapprox" and the "grad" using the following formula:

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒=∣∣𝑔𝑟𝑎𝑑−𝑔𝑟𝑎𝑑𝑎𝑝𝑝𝑟𝑜𝑥∣∣2∣∣𝑔𝑟𝑎𝑑∣∣2+∣∣𝑔𝑟𝑎𝑑𝑎𝑝𝑝𝑟𝑜𝑥∣∣2(2)(2)difference=∣∣grad−gradapprox∣∣2∣∣grad∣∣2+∣∣gradapprox∣∣2

You will need 3 Steps to compute this formula:

1'. compute the numerator using np.linalg.norm(...)

2'. compute the denominator. You will need to call np.linalg.norm(...) twice.

3'. divide them.

If this difference is small (say less than 10−710−7), you can be quite confident that you have computed your gradient correctly. Otherwise, there may be a mistake in the gradient computation.

In[18]:

# GRADED FUNCTION: gradient_check

defgradient_check(x,theta,epsilon=1e-7):

"""

    Implement the backward propagation presented in Figure 1.


    Arguments:

    x -- a real-valued input

    theta -- our parameter, a real number as well

    epsilon -- tiny shift to the input to compute approximated gradient with formula(1)


    Returns:

    difference -- difference (2) between the approximated gradient and the backward propagation gradient

    """


# Compute gradapprox using left side of formula (1). epsilon is small enough, you don't need to worry about the limit.

### START CODE HERE ### (approx. 5 lines)

thetaplus=theta+epsilon# Step 1

thetaminus=theta-epsilon# Step 2

J_plus=thetaplus*x# Step 3

J_minus=thetaminus*x# Step 4

gradapprox=(J_plus-J_minus)/(2.*epsilon)# Step 5

### END CODE HERE ###


# Check if gradapprox is close enough to the output of backward_propagation()

### START CODE HERE ### (approx. 1 line)

grad=backward_propagation(x,theta)

### END CODE HERE ###


### START CODE HERE ### (approx. 1 line)

numerator=np.linalg.norm(grad-gradapprox)# Step 1'

denominator=np.linalg.norm(grad)+np.linalg.norm(gradapprox)# Step 2'

difference=numerator/denominator# Step 3'

### END CODE HERE ###


ifdifference<1e-7:

print("The gradient is correct!")

else:

print("The gradient is wrong!")


returndifference

In[19]:

x,theta=2,4

difference=gradient_check(x,theta)

print("difference = "+str(difference))

The gradient is correct!

difference = 2.919335883291695e-10

Expected Output: The gradient is correct!

** difference **2.9193358103083e-10

Congrats, the difference is smaller than the 10−710−7 threshold. So you can have high confidence that you've correctly computed the gradient in backward_propagation().

Now, in the more general case, your cost function 𝐽J has more than a single 1D input. When you are training a neural network, 𝜃θ actually consists of multiple matrices 𝑊[𝑙]W[l] and biases 𝑏[𝑙]b[l]! It is important to know how to do a gradient check with higher-dimensional inputs. Let's do it!

3) N-dimensional gradient checking

The following figure describes the forward and backward propagation of your fraud detection model.

**Figure 2** : **deep neural network**

*LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID*

Let's look at your implementations for forward propagation and backward propagation.

In[52]:

defforward_propagation_n(X,Y,parameters):

"""

    Implements the forward propagation (and computes the cost) presented in Figure 3.


    Arguments:

    X -- training set for m examples

    Y -- labels for m examples

    parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":

                    W1 -- weight matrix of shape (5, 4)

                    b1 -- bias vector of shape (5, 1)

                    W2 -- weight matrix of shape (3, 5)

                    b2 -- bias vector of shape (3, 1)

                    W3 -- weight matrix of shape (1, 3)

                    b3 -- bias vector of shape (1, 1)


    Returns:

    cost -- the cost function (logistic cost for one example)

    """


# retrieve parameters

m=X.shape[1]

W1=parameters["W1"]

b1=parameters["b1"]

W2=parameters["W2"]

b2=parameters["b2"]

W3=parameters["W3"]

b3=parameters["b3"]

# LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID

Z1=np.dot(W1,X)+b1

A1=relu(Z1)

Z2=np.dot(W2,A1)+b2

A2=relu(Z2)

Z3=np.dot(W3,A2)+b3

A3=sigmoid(Z3)

# Cost

logprobs=np.multiply(-np.log(A3),Y)+np.multiply(-np.log(1-A3),1-Y)

cost=1./m*np.sum(logprobs)


cache=(Z1,A1,W1,b1,Z2,A2,W2,b2,Z3,A3,W3,b3)


returncost,cache

Now, run backward propagation.

In[53]:

defbackward_propagation_n(X,Y,cache):

"""

    Implement the backward propagation presented in figure 2.


    Arguments:

    X -- input datapoint, of shape (input size, 1)

    Y -- true "label"

    cache -- cache output from forward_propagation_n()


    Returns:

    gradients -- A dictionary with the gradients of the cost with respect to each parameter, activation and pre-activation variables.

    """


m=X.shape[1]

(Z1,A1,W1,b1,Z2,A2,W2,b2,Z3,A3,W3,b3)=cache


dZ3=A3-Y

dW3=1./m*np.dot(dZ3,A2.T)

db3=1./m*np.sum(dZ3,axis=1,keepdims=True)


dA2=np.dot(W3.T,dZ3)

dZ2=np.multiply(dA2,np.int64(A2>0))

dW2=1./m*np.dot(dZ2,A1.T)        ##这里没有2

db2=1./m*np.sum(dZ2,axis=1,keepdims=True)


dA1=np.dot(W2.T,dZ2)

dZ1=np.multiply(dA1,np.int64(A1>0))

dW1=1./m*np.dot(dZ1,X.T)

db1=1./m*np.sum(dZ1,axis=1,keepdims=True) ##这里把4改成了1


gradients={"dZ3":dZ3,"dW3":dW3,"db3":db3,

"dA2":dA2,"dZ2":dZ2,"dW2":dW2,"db2":db2,

"dA1":dA1,"dZ1":dZ1,"dW1":dW1,"db1":db1}


returngradients

You obtained some results on the fraud detection test set but you are not 100% sure of your model. Nobody's perfect! Let's implement gradient checking to verify if your gradients are correct.

How does gradient checking work?.

As in 1) and 2), you want to compare "gradapprox" to the gradient computed by backpropagation. The formula is still:

∂𝐽∂𝜃=lim𝜀→0𝐽(𝜃+𝜀)−𝐽(𝜃−𝜀)2𝜀(1)(1)∂J∂θ=limε→0J(θ+ε)−J(θ−ε)2ε

However, 𝜃θ is not a scalar anymore. It is a dictionary called "parameters". We implemented a function "dictionary_to_vector()" for you. It converts the "parameters" dictionary into a vector called "values", obtained by reshaping all parameters (W1, b1, W2, b2, W3, b3) into vectors and concatenating them.

The inverse function is "vector_to_dictionary" which outputs back the "parameters" dictionary.

**Figure 2** : **dictionary_to_vector() and vector_to_dictionary()**

You will need these functions in gradient_check_n()

We have also converted the "gradients" dictionary into a vector "grad" using gradients_to_vector(). You don't need to worry about that.

Exercise: Implement gradient_check_n().

Instructions: Here is pseudo-code that will help you implement the gradient check.

For each i in num_parameters:

To compute J_plus[i]:

Set 𝜃+θ+ to np.copy(parameters_values)

Set 𝜃+𝑖θi+ to 𝜃+𝑖+𝜀θi++ε

Calculate 𝐽+𝑖Ji+ using to forward_propagation_n(x, y, vector_to_dictionary(𝜃+θ+ )).

To compute J_minus[i]: do the same thing with 𝜃−θ−

Compute 𝑔𝑟𝑎𝑑𝑎𝑝𝑝𝑟𝑜𝑥[𝑖]=𝐽+𝑖−𝐽−𝑖2𝜀gradapprox[i]=Ji+−Ji−2ε

Thus, you get a vector gradapprox, where gradapprox[i] is an approximation of the gradient with respect to parameter_values[i]. You can now compare this gradapprox vector to the gradients vector from backpropagation. Just like for the 1D case (Steps 1', 2', 3'), compute:

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒=‖𝑔𝑟𝑎𝑑−𝑔𝑟𝑎𝑑𝑎𝑝𝑝𝑟𝑜𝑥‖2‖𝑔𝑟𝑎𝑑‖2+‖𝑔𝑟𝑎𝑑𝑎𝑝𝑝𝑟𝑜𝑥‖2(3)(3)difference=‖grad−gradapprox‖2‖grad‖2+‖gradapprox‖2

In[69]:

# GRADED FUNCTION: gradient_check_n

defgradient_check_n(parameters,gradients,X,Y,epsilon=1e-7):

"""

    Checks if backward_propagation_n computes correctly the gradient of the cost output by forward_propagation_n


    Arguments:

    parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":

    grad -- output of backward_propagation_n, contains gradients of the cost with respect to the parameters.

    x -- input datapoint, of shape (input size, 1)

    y -- true "label"

    epsilon -- tiny shift to the input to compute approximated gradient with formula(1)


    Returns:

    difference -- difference (2) between the approximated gradient and the backward propagation gradient

    """


# Set-up variables

parameters_values,_=dictionary_to_vector(parameters)

grad=gradients_to_vector(gradients)

num_parameters=parameters_values.shape[0]

J_plus=np.zeros((num_parameters,1))

J_minus=np.zeros((num_parameters,1))

gradapprox=np.zeros((num_parameters,1))

# Compute gradapprox

foriinrange(num_parameters):


# Compute J_plus[i]. Inputs: "parameters_values, epsilon". Output = "J_plus[i]".

# "_" is used because the function you have to outputs two parameters but we only care about the first one

### START CODE HERE ### (approx. 3 lines)

thetaplus=np.copy(parameters_values)# Step 1

thetaplus[i][0]=thetaplus[i][0]+epsilon# Step 2

J_plus[i],_=forward_propagation_n(X,Y,vector_to_dictionary(thetaplus))# Step 3

### END CODE HERE ###


# Compute J_minus[i]. Inputs: "parameters_values, epsilon". Output = "J_minus[i]".

### START CODE HERE ### (approx. 3 lines)

thetaminus=np.copy(parameters_values)# Step 1

thetaminus[i][0]=thetaminus[i][0]-epsilon# Step 2       

J_minus[i],_=forward_propagation_n(X,Y,vector_to_dictionary(thetaminus))# Step 3

### END CODE HERE ###


# Compute gradapprox[i]

### START CODE HERE ### (approx. 1 line)

gradapprox[i]=(J_plus[i]-J_minus[i])/(2*epsilon)

### END CODE HERE ###


# Compare gradapprox to backward propagation gradients by computing difference.

### START CODE HERE ### (approx. 1 line)

numerator=np.linalg.norm(grad-gradapprox)# Step 1'

denominator=np.linalg.norm(grad)+np.linalg.norm(gradapprox)# Step 2'

difference=numerator/denominator# Step 3'

### END CODE HERE ###

ifdifference>1e-7:

print("\033[93m"+"There is a mistake in the backward propagation! difference = "+str(difference)+"\033[0m")

else:

print("\033[92m"+"Your backward propagation works perfectly fine! difference = "+str(difference)+"\033[0m")


returndifference

In[70]:

X,Y,parameters=gradient_check_n_test_case()

cost,cache=forward_propagation_n(X,Y,parameters)

gradients=backward_propagation_n(X,Y,cache)

difference=gradient_check_n(parameters,gradients,X,Y)

There is a mistake in the backward propagation! difference = 1.1890417878779317e-07

##最后的结果是1.1890417878779317e-07,比1e-07还要大,所以会提示Mistake,找来找去没有其他错误要改了,看了其他网友的结果也是一样,看来是作业题的问题

Expected output:

** There is a mistake in the backward propagation!**difference = 0.285093156781

It seems that there were errors in the backward_propagation_n code we gave you! Good that you've implemented the gradient check. Go back to backward_propagation and try to find/correct the errors (Hint: check dW2 and db1). Rerun the gradient check when you think you've fixed it. Remember you'll need to re-execute the cell defining backward_propagation_n() if you modify the code.

Can you get gradient check to declare your derivative computation correct? Even though this part of the assignment isn't graded, we strongly urge you to try to find the bug and re-run gradient check until you're convinced backprop is now correctly implemented.

Note

Gradient Checking is slow! Approximating the gradient with ∂𝐽∂𝜃≈𝐽(𝜃+𝜀)−𝐽(𝜃−𝜀)2𝜀∂J∂θ≈J(θ+ε)−J(θ−ε)2ε is computationally costly. For this reason, we don't run gradient checking at every iteration during training. Just a few times to check if the gradient is correct.

Gradient Checking, at least as we've presented it, doesn't work with dropout. You would usually run the gradient check algorithm without dropout to make sure your backprop is correct, then add dropout.

Congrats, you can be confident that your deep learning model for fraud detection is working correctly! You can even use this to convince your CEO. :)

**What you should remember from this notebook**: - Gradient checking verifies closeness between the gradients from backpropagation and the numerical approximation of the gradient (computed using forward propagation). - Gradient checking is slow, so we don't run it in every iteration of training. You would usually run it only to make sure your code is correct, then turn it off and use backprop for the actual learning process.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容