我们都知道很多分析方法只有量表题才可以使用,非量表题可用的方法是很有限的,但即便如此很多问卷还是会被设计成非量表的格式,那么非量表问卷应该如何分析呢?非量表题又有什么特点?在分析时需要注意什么呢?下面就来一一解答。
量表与非量表
研究非量表,首先要先清楚什么是量表。
量表是一种测量工具,这里指的量表是李克特量表,用于测量样本人群对于某件事情的态度或者看法情况。通常会有很多题项构成,答项类似于“非常同意”、“同意”、“不一定”、“不同意”、“非常不同意”这种有比较意义的选项。
量表的尺度形式有多种,常见是五级量表,即五个答项,另外还会有七级量表,九级量表或者四级量表等。
除量表题以外的题项,可称为非量表题,比如多选题、填空题。非量表题多用于了解某个主题的现状,样本的基本态度情况,通常情况下现状政策类研究会更多使用非量表题。
比如不同年龄对于旅游需求的现状研究,在一些以量表题为核心的问卷中,也需要设计非量表题来收集样本的基本背景信息(比如性别、年龄)、样本特征、行为(比如您平时关注旅游方面的信息吗?)等。
结构框架
具体分析步骤:
1、样本背景分析,样本特征、行为分析
样本背景分析,或者样本特征、行为分析这两部分,通常情况下均是使用频数分析,统计样本对于各个选项的选择比例情况。
2、基本现状和样本态度分析
此步为基础分析,首先充分了解样本现状情况,以及样本的态度情况,结合结果可以对不同群体的态度差异情况、现状差异情况进行分析,或者进一步研究影响关系。
在进行研究时,不应该拘泥于分析方法的使用,此部分更多会使用简单易懂的频数和百分比描述,最好结合各种图形展示,比如多选题可以使用条形图,单选题可以使用柱形图展示等。
3、差异分析
在上一部分打好基础后,就可以开始比较差异了。可以分析不同样本人群在题项上的态度差异,也或者不同人群在基本现状题项上的差异情况进行差异对比分析。
研究方法上看,针对非量表类题项关系研究,即分类与分类数据之间的关系研究,应该使用卡方分析。
4、影响关系分析
除了差异分析,也可以研究某种因素对样本态度的影响关系。Logistic回归分析类似于多元线性回归,均为研究X对Y的影响情况。如果Y为定量数据,则使用多元线性回归,如果Y为分类数据,则应该使用Logistic回归分析。
结合数据情况,可以将Logistic回归分析分为二元logistic回归分析,或者多分类logistic回归分析。二者即有相同之处,也有不同的地方。主要区别在于Y的选项个数。Y为定类且选项仅2个,应该使用二元logistic回归;如果Y有多个选项,应该使用多分类logistic回归分析。
思路核心
此类研究框架的核心在于“分组”。
第一件事情为“分组”,也就是给每个题分组,比如问卷有30个题,那这30题可以被归纳为几个方面呢?比如基本背景,认知,态度,行为,原因等五个方面。
第二件事情是将“分组”分别作为一个部分进行分析,比如上面提到的样本基本背景,就可以用频数分析来统计分析数据。
第三件事情是分组题项与分组题项之间进行交叉。比如基本背景分别与“认知”,“态度”,“行为”,“原因”上的差异性。通常是使用交叉分析。
特别说明
信度分析和效度分析仅仅是针对量表数据,非量表数据一般不进行信效度分析。
更多分析方法的使用说明可到SPSSAU官网查看。