【转载】Python 中各种imread函数的区别与联系

https://blog.csdn.net/renelian1572/article/details/78761278


Python 中各种imread函数的区别与联系

最近一直在用python做图像处理相关的东西,被各种imread函数搞得很头疼,因此今天决定将这些imread总结一下,以免以后因此犯些愚蠢的错误。如果你正好也对此感到困惑可以看下这篇总结。当然,要了解具体的细节,还是应该 read the fuck code和API document,但貌似python的很多模块文档都不是很全,所以只能多看代码和注释了。

先来看看常用的读取图片的方式:

PIL.Image.open

scipy.misc.imread

scipy.ndimage.imread

cv2.imread

matplotlib.image.imread

skimge

caffe.io.load_iamge

知乎上有篇帖子专门介绍了这些方法的性能Python的各种imread函数在实现方式和读取速度上有何区别?

这些方法可以分为四大家族

PIL

PIL.Image.open + numpy

scipy.misc.imread

scipy.ndimage.imread

这些方法都是通过调用PIL.Image.open 读取图像的信息;

PIL.Image.open 不直接返回numpy对象,可以用numpy提供的函数进行转换,参考Image和Ndarray互相转换;

其他模块都直接返回numpy.ndarray对象,通道顺序为RGB,通道值得默认范围为0-255。

matplotlib

matplot.image.imread

从名字中可以看出这个模块是具有matlab风格的,直接返回numpy.ndarray格式通道顺序是RGB,通道值默认范围0-255。

opencv

cv2.imread

使用opencv读取图像,直接返回numpy.ndarray 对象,通道顺序为BGR ,注意是BGR,通道值默认范围0-255。

skimage

skimage.io.imread: 直接返回numpy.ndarray 对象,通道顺序为RGB,通道值默认范围0-255。

caffe.io.load_image: 没有调用默认的skimage.io.imread,返回值为0-1的float型数据,通道顺序为RGB

关于图像的一些说明

可以使用matplotlib的pyplot模块的show也可以使用cv2的imshow方法,对于这些方法只要你传入的参数是numpy.ndarray(通道值范围0-255) 就可以正常显示,不存在区别,这也可以看出numpy在python中的重要地位;但是cv2.imshow方法由于它针对的是cv2的imread 所以它内部会做通道顺序的变化,传入为BGR转换为RGB,所以你如果传入RGB显示的就是BGR了。废话说完了,看代码。

以下是测试代码

运行环境为windows10+python3.6

#encoding=utf8

from PIL import Image

import numpy as np

import cv2

import matplotlib.pyplot as plt # plt 用于显示图片

import matplotlib.image as mpimg # mpimg 用于读取图片

import skimage

import sys

from skimage import io

#PIL

#相关:scipy.misc.imread, scipy.ndimage.imread

#misc.imread 提供可选参数mode,但本质上是调用PIL,具体的模式可以去看srccode或者document

#https://github.com/scipy/scipy/blob/v0.17.1/scipy/misc/pilutil.py

imagepath='test1.jpg'

im1=Image.open(imagepath)

im1=np.array(im1)#获得numpy对象,RGB

print(type(im1))

print(im1.shape)

#2 opencv

im2=cv2.imread(imagepath)

print(type(im2))#numpy BGR

print(im2.shape)#[width,height,3]

#3 matplotlib 类似matlab的方式

im3 = mpimg.imread(imagepath)

print(type(im3))#np.array

print(im3.shape)

#4 skimge

#caffe.io.load_iamge()也是调用的skimage实现的,返回的是0-1 float型数据

im4 = io.imread(imagepath)

print(type(im4))#np.array

print(im4.shape)

#print(im4)

# cv2.imshow('test',im4)

# cv2.waitKey()

#统一使用plt进行显示,不管是plt还是cv2.imshow,在python中只认numpy.array,但是由于cv2.imread 的图片是BGR,cv2.imshow 时相应的换通道显示

plt.subplot(221)

plt.title('PIL read')

plt.imshow(im1)

plt.subplot(222)

plt.title('opencv read')

plt.imshow(im2)

plt.subplot(223)

plt.title('matplotlib read')

plt.imshow(im3)

plt.subplot(224)

plt.title('skimage read')

plt.imshow(im4)

#plt.axis('off') # 不显示坐标轴

plt.show()

##################################### cmd output################################

# <class 'numpy.ndarray'>

# (851, 1279, 3)

# <class 'numpy.ndarray'>

# (851, 1279, 3)

# <class 'numpy.ndarray'>

# (851, 1279, 3)

# <class 'numpy.ndarray'>

# (851, 1279, 3)


测试结果

总结

虽然python中没有显示的数据类型声明,但是在编程的过程中自己必须得清楚数据类型是什么,否则就有可能犯一些愚蠢的错误。

---------------------

作者:renelian1572

来源:CSDN

原文:https://blog.csdn.net/renelian1572/article/details/78761278

版权声明:本文为博主原创文章,转载请附上博文链接!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,816评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,729评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,300评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,780评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,890评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,084评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,151评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,912评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,355评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,666评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,809评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,504评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,150评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,121评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,628评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,724评论 2 351

推荐阅读更多精彩内容