spark2以后对limit的优化和存在问题

问题

假如我们在spark-shell上执行:
spark.sql("select * from table limit 1000").collect()
spark会开多少多个任务去跑这个任务呢?

实验

OK,我们来做一个实验吧!


job

通过实验结果我们可以看到就开了一个Task执行,but, 是这样的嘛?
其实开多少Task还真不是固定的,这个取决于我们take的条数和这张表底层每个分区数据量的大小,怎么说呢,我们举个🌰。
首先spark2后,spark默认会先去读取一个分区的数据,假如我limit 1000条,那我就从这个分区去取1000条数据就好了,但是如果这个分区的数据不过1000条怎么办,这时spark会通一个公式去计算出下次读取的分区个数。

limit 操作最终会调用 SparkPlan.executeTake(n: Int) 来获取至多 n 条 records, 待我贴出源码

def executeTake(n: Int): Array[InternalRow] = {
    if (n == 0) {
      return new Array[InternalRow](0)
    }

    val childRDD = getByteArrayRdd(n).map(_._2)

    val buf = new ArrayBuffer[InternalRow]
    val totalParts = childRDD.partitions.length
    var partsScanned = 0
    # 通过while循环去runJob获取records, 直到获取的records达到take条数
    while (buf.size < n && partsScanned < totalParts) {
      // The number of partitions to try in this iteration. It is ok for this number to be
      // greater than totalParts because we actually cap it at totalParts in runJob.
      var numPartsToTry = 1L
      if (partsScanned > 0) {
        // If we didn't find any rows after the previous iteration, quadruple and retry.
        // Otherwise, interpolate the number of partitions we need to try, but overestimate
        // it by 50%. We also cap the estimation in the end.
        val limitScaleUpFactor = Math.max(sqlContext.conf.limitScaleUpFactor, 2)
        if (buf.isEmpty) {
          numPartsToTry = partsScanned * limitScaleUpFactor
        } else {
          val left = n - buf.size
          // As left > 0, numPartsToTry is always >= 1
          numPartsToTry = Math.ceil(1.5 * left * partsScanned / buf.size).toInt
          numPartsToTry = Math.min(numPartsToTry, partsScanned * limitScaleUpFactor)
        }
      }

      val p = partsScanned.until(math.min(partsScanned + numPartsToTry, totalParts).toInt)
      val sc = sqlContext.sparkContext
      val res = sc.runJob(childRDD,
        (it: Iterator[Array[Byte]]) => if (it.hasNext) it.next() else Array.empty[Byte], p)

      buf ++= res.flatMap(decodeUnsafeRows)

      partsScanned += p.size
    }

    if (buf.size > n) {
      buf.take(n).toArray
    } else {
      buf.toArray
    }
  }

默认情况下每次 runJob 扫描的 partitions 数:

1
4
20
100
500
2500
6875

通过读取的partitions的个数我们可以发现最初读取的partition数量太少,后面读取的partition数据量太多。

其实这边我们可以通过计算每次读取partitions得到的records估算出下去应该读取的分区,这样会比较靠谱些。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容