《机器学习》第9章 聚类

关键字

Q1:分类和聚类有什么不同?

第一,它们面对的根本问题不同。分类的根本问题是判断给定的某一个样本属于那一个类别;聚类的根本问题是探索给定的数据集可以分成哪几种类别。

第二,两者使用的训练数据集有差异。分类任务使用的训练数据集中每个样本除了有属性数据外,还必须有一个标记值,用以表示该样本属于哪一类;聚类任务的数据集中每个样本可以只有属性值,没有标记值(当然也可以有)。这也可以认为是我们常说的,监督学习与无监督学习。

Q2:聚类的一般方法有哪些?

有三类:基于原型的聚类、基于密度的聚类、和基于层次的聚类。

补充:算法多种多样,但是万变不离其宗,最基本的思想还是先提出一中衡量样本之间相似程度的的手段,如距离、相关系数等,然后逐一计算数据集中各样本之间的相似度,尽量把相似度高的样本放到同一类。


1、聚类

聚类试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集成为一个“簇”。通过这样的划分,每个簇可能对应于一些潜在的概念(也就是类别),如“浅色瓜” “深色瓜”,“有籽瓜” “无籽瓜”,甚至“本地瓜” “外地瓜”等;需说明的是,这些概念对聚类算法而言事先是未知的,聚类过程仅能自动形成簇结构,簇对应的概念语义由使用者来把握和命名。

2、聚类和分类的区别

聚类是无监督的学习算法,分类是有监督的学习算法。所谓有监督就是有已知标签的训练集(也就是说提前知道训练集里的数据属于哪个类别),机器学习算法在训练集上学习到相应的参数,构建模型,然后应用到测试集上。而聚类算法是没有标签的,聚类的时候,我们并不关心某一类是什么,我们需要实现的目标只是把相似的东西聚到一起。

3、性能度量

聚类的目的是把相似的样本聚到一起,而将不相似的样本分开,类似于“物以类聚”,很直观的想法是同一个簇中的相似度要尽可能高,而簇与簇之间的相似度要尽可能的低。
性能度量大概可分为两类: 一是外部指标, 二是内部指标 。
外部指标:将聚类结果和某个“参考模型”进行比较。
内部指标:不利用任何参考模型,直接考察聚类结果。

4、K-Means的原理

对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大

5、K-Means算法

给定样本集D,k-means算法针对聚类所得簇划分C最小化平方误差。

这条公式在一定程度上刻画了簇内样本围绕簇均值向量的紧密程度,E值越小则簇内样本相似度越高。
最小化上面的公式并不容易,找到它的最优解需考察样本集D内所有可能的簇划分,这是一个NP难问题。因此,k-means算法采用了贪心策略,通过迭代优化来近似求解上面的公式。
算法流程如下:

其中第一行对均值向量进行初始化,在第4-8行与第9-16行依次对当前簇划分及均值向量迭代更新,若迭代更新后聚类结果保持不变,则在第18行将当前簇划分结果返回。

下面以西瓜数据集4.0为例来演示k-means算法的学习过程。我们将编号为i的样本称为xi,这是一个包含“密度”与“含糖率”两个属性值的二维向量。

假定簇数k=3,算法开始是随机选取三个样本x6,x12,x27作为初始均值向量,即

考察样本x1=(0.697;0.460),它与当前均值向量u1,u2,u3的距离分别是0.369,0.506,0.166,因此x1将被划入簇C3中。类似的,对数据集中所有的样本考察一遍后,可得当前簇划分为

于是,可从C1,C2,C3分别求出新的均值向量

更新当前均值向量后,不断重复上述过程,如下图所示,第五轮迭代产生的结果与第四轮迭代相同,于是算法停止,得到最终的簇划分。

6、K-Means与KNN

K-Means是无监督学习的聚类算法,没有样本输出;而KNN是监督学习的分类算法,有对应的类别输出。KNN基本不需要训练,对测试集里面的点,只需要找到在训练集中最近的k个点,用这最近的k个点的类别来决定测试点的类别。而K-Means则有明显的训练过程,找到k个类别的最佳质心,从而决定样本的簇类别。
当然,两者也有一些相似点,两个算法都包含一个过程,即找出和某一个点最近的点。两者都利用了最近邻(nearest neighbors)的思想。

7、K-Means的优点与缺点

优点:
简单,易于理解和实现;收敛快,一般仅需5-10次迭代即可,高效
缺点:
1,对K值得选取把握不同对结果有很大的不同
2,对于初始点的选取敏感,不同的随机初始点得到的聚类结果可能完全不同
3,对于不是凸的数据集比较难收敛
4,对噪点过于敏感,因为算法是根据基于均值的
5,结果不一定是全局最优,只能保证局部最优
6,对球形簇的分组效果较好,对非球型簇、不同尺寸、不同密度的簇分组效果不好。

8、代码部分

读取数据

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
dataset = pd.read_csv('watermelon_4.csv', delimiter=",")
data = dataset.values
print(dataset)

K-Means算法

import random
def distance(x1, x2):
    return sum((x1-x2)**2)
def Kmeans(D,K,maxIter):
    m, n = np.shape(D)
    if K >= m:
        return D
    initSet = set()
    curK = K
    while(curK>0):  # 随机选取k个样本
        randomInt = random.randint(0, m-1)
        if randomInt not in initSet:
            curK -= 1
            initSet.add(randomInt)
    U = D[list(initSet), :]  # 均值向量
    C = np.zeros(m)
    curIter = maxIter
    while curIter > 0:
        curIter -= 1
        for i in range(m):
            p = 0
            minDistance = distance(D[i], U[0])
            for j in range(1, K):
                if distance(D[i], U[j]) < minDistance:
                    p = j
                    minDistance = distance(D[i], U[j])
            C[i] = p
        newU = np.zeros((K, n))
        cnt = np.zeros(K)
        for i in range(m):
            newU[int(C[i])] += D[i]
            cnt[int(C[i])] += 1
        changed = 0
        for i in range(K):
            newU[i] /= cnt[i]
            for j in range(n):
                if U[i, j] != newU[i, j]:
                    changed = 1
                    U[i, j] = newU[i, j]
        if changed == 0:
            return U, C, maxIter-curIter
    return U, C, maxIter-curIter

作图查看结果

U, C, iter = Kmeans(data,3,10)
# print(U)
# print(C)
# print(iter)

f1 = plt.figure(1)
plt.title('watermelon_4')
plt.xlabel('density')
plt.ylabel('ratio')
plt.scatter(data[:, 0], data[:, 1], marker='o', color='g', s=50)
plt.scatter(U[:, 0], U[:, 1], marker='o', color='r', s=100)
# plt.xlim(0,1)
# plt.ylim(0,1)
m, n = np.shape(data)
for i in range(m):
    plt.plot([data[i, 0], U[int(C[i]), 0]], [data[i, 1], U[int(C[i]), 1]], "c--", linewidth=0.3)
plt.show()

输出如下:

上图划分了三个簇,每个簇的命名都是由我们来命名,例如,我们可以把它们分别命名为:好瓜、中等瓜、坏瓜。

完整代码参考码云
参考文献
https://www.jianshu.com/p/1f8fb959e013

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352

推荐阅读更多精彩内容