python机器学习(三)分类算法-朴素贝叶斯

朴素贝叶斯

同步更新在个人网站:http://www.wangpengcufe.com/machinelearning/pythonml-pythonml3/

一、概率基础

概率定义:
概率定义为一件事情发生的可能性,例如,随机抛硬币,正面朝上的概率。

联合概率:
包含多个条件,且所有条件同时成立的概率,记作:𝑃(𝐴,𝐵) 。

条件概率:
事件A在另外一个事件B已经发生条件下的发生概率,记作:𝑃(𝐴|𝐵) 。P(A1,A2|B) = P(A1|B)P(A2|B),需要注意的是:此条件概率的成立,是由于A1,A2相互独立的结果。

二、朴素贝叶斯介绍

公式:

朴素贝叶斯公式

其中,w为给定文档的特征值(频数统计,预测文档提供),c为文档类别。
公式可以理解为:

朴素贝叶斯公式的理解

其中c可以是不同类别。

公式分为三个部分:

𝑃(𝐶):每个文档类别的概率(某文档类别词数/总文档词数)
𝑃(𝑊│𝐶):给定类别下特征(被预测文档中出现的词)的概率
计算方法:𝑃(𝐹1│𝐶)=𝑁𝑖/𝑁 (训练文档中去计算)
𝑁𝑖为该𝐹1词在C类别所有文档中出现的次数
N为所属类别C下的文档所有词出现的次数和
𝑃(𝐹1,𝐹2,…): 预测文档中每个词的概率

举个栗子:

现有一篇被预测文档:出现了都江宴,武汉,武松,计算属于历史,地理的类别概率?


image

历史:𝑃(都江宴,武汉,武松│历史)∗P(历史)=(10/108)∗(22/108)∗(65/108)∗(108/235) =0.00563435
地理:𝑃(都江宴,武汉,武松│地理)∗P(地理)=(58/127)∗(17/127)∗(0/127)∗(127/235)=0

拉普拉斯平滑:
思考:属于某个类别为0,合适吗?
从上面的例子我们得到地理概率为0,这是不合理的,如果词频列表里面有很多出现次数都为0,很可能计算结果都为零。
解决方法:拉普拉斯平滑系数。

image

𝛼为指定的系数一般为1,m为训练文档中统计出的特征词个数

sklearn朴素贝叶斯实现API:

sklearn.naive_bayes.MultinomialNB(alpha = 1.0)
alpha:拉普拉斯平滑系数

案例:新闻分类

from sklearn.datasets import fetch_20newsgroups
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import classification_report

news = fetch_20newsgroups(subset='all')
# 进行数据分割
x_train, x_test, y_train, y_test = train_test_split(news.data, news.target, test_size=0.25)
# 对数据集进行特征抽取
tf = TfidfVectorizer()
# 以训练集当中的词的列表进行每篇文章重要性统计['a','b','c','d']
x_train = tf.fit_transform(x_train)
x_test = tf.transform(x_test)

# 进行朴素贝叶斯算法的预测
mlt = MultinomialNB(alpha=1.0)
print(x_train)
  (0, 120993)   0.0838226531816039
  (0, 36277)    0.028728297074726128
  (0, 118261)   0.051733692584494416
  (0, 118605)   0.08660213360333731
  (0, 78914)    0.10725171098177662
  (0, 120174)   0.07226288195761017
  (0, 146730)   0.03649798864200877
  (0, 49960)    0.09535813190987927
  (0, 108029)   0.10406938034117505
  (0, 151947)   0.1081016719923428
  (0, 120110)   0.13513684031456163
  (0, 34588)    0.06453595223748614
  (0, 133893)   0.04993313285348771
  (0, 31218)    0.07845873103784344
  (0, 108032)   0.08430822316250115
  (0, 30921)    0.11806736198114927
  (0, 33267)    0.030864914635712264
  (0, 36137)    0.0714722249527062
  (0, 57776)    0.07110907374703304
  (0, 77937)    0.026514922107534245
  (0, 90944)    0.09746338158610199
  (0, 135824)   0.09394365947415394
  (0, 49956)    0.09183375914922258
  (0, 151957)   0.07203295034824395
  (0, 33356)    0.07203295034824395
  : :
  (14133, 45099)    0.030803124311834594
  (14133, 135309)   0.02305588722190138
  (14133, 135472)   0.06570104508511963
  (14133, 52014)    0.05222321951090842
  (14133, 108029)   0.05584161408783517
  (14133, 36137)    0.07670122356304401
  (14133, 34063)    0.12187079805145053
  (14133, 106978)   0.0851182715752145
  (14133, 106534)   0.03378056586331488
  (14133, 105921)   0.09707364301640503
  (14133, 103839)   0.07144955527096918
  (14133, 136535)   0.03801377630817533
  (14133, 42966)    0.028558472354146207
  (14133, 81075)    0.02180715538325887
  (14133, 135641)   0.025875408277197205
  (14133, 148185)   0.028450089379106706
  (14133, 78894)    0.020030955308174968
  (14133, 147914)   0.047259202253661425
  (14133, 90152)    0.017166154294786778
  (14133, 45598)    0.05645818387150284
  (14133, 135325)   0.03667700550640032
  (14133, 118218)   0.02343357701502816
  (14133, 131632)   0.01710795977554328
  (14133, 59957)    0.0485327006460036
  (14133, 67480)    0.01710795977554328
mlt.fit(x_train, y_train)   #MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True)
y_predict = mlt.predict(x_test)
print("预测的文章类别为:", y_predict)
#预测的文章类别为: [ 3 16  5 ...  0  5  8]
# 得出准确率
print("准确率为:", mlt.score(x_test, y_test))
#准确率为: 0.8414685908319185
print("每个类别的精确率和召回率:", classification_report(y_test, y_predict, target_names=news.target_names))
每个类别的精确率和召回率:                           precision    recall  f1-score   support

             alt.atheism       0.89      0.75      0.81       210
           comp.graphics       0.87      0.81      0.84       225
 comp.os.ms-windows.misc       0.77      0.90      0.83       209
comp.sys.ibm.pc.hardware       0.77      0.78      0.78       258
   comp.sys.mac.hardware       0.86      0.88      0.87       223
          comp.windows.x       0.97      0.76      0.85       260
            misc.forsale       0.92      0.68      0.78       233
               rec.autos       0.91      0.89      0.90       263
         rec.motorcycles       0.94      0.96      0.95       260
      rec.sport.baseball       0.93      0.92      0.92       230
        rec.sport.hockey       0.89      0.97      0.93       234
               sci.crypt       0.64      0.99      0.78       235
         sci.electronics       0.94      0.68      0.79       275
                 sci.med       0.96      0.89      0.93       241
               sci.space       0.89      0.97      0.93       246
  soc.religion.christian       0.56      0.99      0.72       257
      talk.politics.guns       0.84      0.94      0.89       256
   talk.politics.mideast       0.92      0.98      0.94       245
      talk.politics.misc       0.98      0.67      0.80       182
      talk.religion.misc       1.00      0.17      0.29       170

                accuracy                           0.84      4712
               macro avg       0.87      0.83      0.83      4712
            weighted avg       0.87      0.84      0.84      4712

三、总结

优点:

  • 朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。
  • 对缺失数据不太敏感,算法也比较简单,常用于文本分类。
  • 分类准确度高,速度快

缺点:

  • 需要知道先验概率P(F1,F2,…|C),因此在某些时候会由于假设的先验模型的原因导致预测效果不佳。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,634评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,951评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,427评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,770评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,835评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,799评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,768评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,544评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,979评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,271评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,427评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,121评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,756评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,375评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,579评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,410评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,315评论 2 352