ARINC429Tutorial

ARINC 429 Specification Overview

The  ARINC 429 Specification defines the standard requirements for the transfer of digital data between avionics systems on commercial aircraft. ARINC 429 is also known as the Mark 33 DITS Specification. Signal levels, timing and protocol characteristics are defined for ease of design implementation and data  communications on the Mark 33 Digital Information Transfer System (DITS) bus.

ARINC 429 is a privately copywritten specification developed to provide interchangeability and interoperability of line replaceable units (LRUs) in commercial aircraft.

Manufacturers of avionics equipment are under no requirement to comply to the ARINC 429 Specification, but designing avionics systems to meet the design guidelines provides cross-manufacturer interoperability between functional units.

Overview of ARINC

ARINC stands for Aeronautical Radio, Inc., a private corporation organized in 1929, and is comprised of airlines, aircraft manufacturers and avionics equipment manufacturers as corporate shareholders. ARINC was developed to produce specifications and standards for avionics equipment outside the government for domestic and overseas manufacturers.

ARINC copywrites and publishes standards produced by the Airlines Electronic Engineering Committee (AEEC). The AEEC is an international standards organization made up of major airline operators, avionics industry manufacturers and ARINC members.

The AEEC sets standards for avionics equipment and systems and provides industry defined requirements for standardization of form, fit and function between various manufacturers products.

ARINC publishes the AEEC produced standards under three types of documents:

1. ARINC Characteristics

Characteristics are definitions of the form, fit and function of avionics equipment. These documents are equipment specific and define how an unit will operate. The ARINC 500 Series of Characteristics define older analog avionics equipment where the ARINC 700 Series are more current documents and are typically digital versions of the analog specs.

400 Series documents are general design and support documentation for the 500 Series avionics equipment Characteristics.

600 Series documents are general design and support documentation for the 700 Series avionics equipment Characteristics.

2. ARINC Specifications

Specifications are used to define:

- Physical packaging and mounting of avionics equipment

- Data communications standards

- High level computer languages

The ARINC429 Specification, Mark 33 Digital Information Transfer System falls under the Specification document category.

3. ARINC Reports

Reports provide general information and best practice guidelines for airlines.

Reports predominately refer to maintenance and support procedures.

History of ARINC 429

The ARINC 429 Specification developed out of the original commercial aviation digital communication spec, the ARINC 419 Specification. The ARINC 419, first released in 1966 and last revised in 1983, describes four different wiring topologies, including a serial, twisted shielded pair interface used by the Digital Air Data System (DADS), known as the ARINC575 or DADS 575 Spec.

This serial topology evolved into the ARINC429 Specification, first released as ARINC 429-1 in April 1978,  and currently exists as ARINC 429-15.

ARINC 429-15 was adopted by the AEEC in 1995 and is comprised of three parts:

ARINC Specification 429, Part 1-15: Functional Description, Electrical Interface, Label Assignments and Word Formats

ARINC Specification 429, Part 2-15: Discrete Word Data Standards

ARINC Specification 429, Part 3-15: File Data Transfer Techniques

Part 1 addresses the buses physical parameters, label and address assignments, and word formats.

Part 2 defines the formats of words with discrete word bit assignments.

Part 3 defines link layer file data transfer protocol for data block and file transfers.

The ARINC 429 Specification

The ARINC 429 Specification establishes how avionics equipment and systems communicate on commercial aircraft. The specification defines electrical characteristics, word structures and protocol necessary to establish bus communication. ARINC 429 utilizes the simplex, twisted shielded pair data bus standard Mark 33 Digital Information Transfer System bus.

ARINC 429 defines both the hardware and data formats required for bus transmission. Hardware consists of a single transmitter – or source – connected to from 1-20 receivers – or sinks – on one twisted wire pair. Data can be transmitted in one direction only – simplex communication – with bi-directional transmission requiring two channels or buses. The devices, line replaceable units or LRUs, are most commonly configured in a star or bus-drop topology. Each LRU may contain multiple transmitters and receivers communicating on different buses. This simple architecture, almost point-to-point wiring, provides a highly reliable transfer of data.

A transmitter may ‘talk only’ to a number of receivers on the bus, up to 20 on one wire pair, with each receiver continually monitoring for its applicable data, but does not acknowledge receipt of the data.

A transmitter may require acknowledgement from a receiver when large amounts of data have been transferred. This handshaking is performed using a particular word style, as opposed to a hard wired handshake. When this two way communication format is required, two twisted pairs constituting two channels are necessary to carry information back and forth, one for each direction.

Transmission from the source LRU is comprised of 32-bit words containing a 24-bit data portion containing the actual information, and an 8-bit label describing the data itself. LRUs have no address assigned through ARINC 429, but rather have Equipment ID numbers which allow grouping equipment into systems, which facilitates system management and file transfers.

Sequential words are separated by at least 4-bit times of null or zero voltage. By utilizing this null gap between words, a separate clock signal is unnecessary. Transmission rates may be at either a low speed – 12.5kHz – or a high speed – 100kHz.

ARINC 429 Cable Characteristics

The transmission bus media uses a 78W shielded twisted pair cable. The shield must be grounded at each end and at all junctions along the bus.

The transmitting source output impedance should be 75W ± 5W divided equally between Line A and Line B. This balanced output should closely match the impedance of the cable. The receiving sink must have an effective input impedance of 8kW minimum.

Maximum length is not specified, as it is dependent on the number of sink receivers, sink drain and source power. Most systems are designed for under 150 feet, but conditions permitting, can extend to 300 feet and beyond.

ARINC 429 Transmission Characteristics

ARINC 429 specifies two speeds for data transmission. Low speed operation is stated at 12.5kHz, with an actual allowable range of 12 to 14.5kHz. High speed operation is 100kHz ± 1% allowed. These two data rates can not be used on the same transmission bus.

Data is transmitted in a bipolar, Return-to-Zero format. This is a tri-state modulation consisting of HIGH, NULL and LOW states.

Transmission voltages are measured across the output terminals of the source. Voltages presented across the receiver input will be dependent on line length, stub configuration and the number of receivers connected. The following voltage levels indicate the three allowable states:

In bipolar, Return-to-Zero – or RZ – format, a HIGH (or 1) is achieved with the transmission signal going from NULL to +10V for the first half of the bit cycle, then returning to zero or NULL.

A LOW (or 0) is produced by the signal dropping from NULL to –10V for the first half bit cycle, then returning to zero.

With a Return-to-Zero modulation format, each bit cycle time ends with the signal level at 0V, eliminating the need for an external clock, creating a self-clocking signal.

ARINC 429 Waveform Parameters

Pulse rise and fall times are controlled by RC circuits built into ARINC 429 transmitters. This circuitry minimizes overshoot ringing common with short rise times. Allowable rise and fall times are shown below for both bit rates. Bit and ½ bit times are also defined.

ARINC 429 Word Formats

ARINC 429 protocol uses a point-to-point format, transmitting data from a single source on the bus to up to 20 receivers. The transmitter is always transmitting, either data words or the NULL state. Most ARINC messages contain only one data word consisting of either Binary (BNR), Binary Coded Decimal (BCD) or alphanumeric data encoded using ISO Alphabet No. 5. File data transfers that send more than one word are also allowed.

The only two fields definitively required are the Label and the Parity bit, leaving up to 23-bits available for higher resolution data representation. Many non-standard word formats have been adopted by various manufacturers of avionics equipment. Even with the variations included, all ARINC data is transmitted in 32-bit words. Any un-used bits are padded with zeros.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,258评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,335评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,225评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,126评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,140评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,098评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,018评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,857评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,298评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,518评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,678评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,400评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,993评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,638评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,801评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,661评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,558评论 2 352

推荐阅读更多精彩内容