Java 8 Stream API学习总结

Java 8 API添加了一个新的抽象称为流Stream,可以让你以一种声明的方式处理数据。Stream API可以极大提高Java程序员的生产力,让程序员写出高效率、干净、简洁的代码。这种风格将要处理的元素集合看作一种流, 流在管道中传输, 并且可以在管道的节点上进行处理, 比如筛选, 排序,聚合等。元素流在管道中经过中间操作(intermediate operation)的处理,最后由最终操作(terminal operation)得到前面处理的结果。

这一次为什么要系统性的总结一下 Java 8 Stream API 呢?说得简单点,我们先不论性能,我们就是为了 装x ,而且要让这个 x 装得再优秀一些,仅此而已!

Stream Tests

Stream基础知识

流程

创建流流的中间操作流的最终操作

创建流

我们需要把哪些元素放入流中,常见的api有:

// 使用List创建流
list.stream()

// 使用一个或多个元素创建流
Stream.of(T value)
Stream.of(T... values)

// 使用数组创建流
Arrays.stream(T[] array)

// 创建一个空流
Stream.empty()

// 两个流合并
Stream.concat(Stream<? extends T> a, Stream<? extends T> b)

// 无序无限流
Stream.generate(Supplier<T> s)

// 通过迭代产生无限流
Stream.iterate(final T seed, final UnaryOperator<T> f)

流的中间操作

// 元素过滤
filter
limit
skip
distinct

// 映射
map
flatmap

// 排序

流的最终操作

通过流对元素的最终操作,我们想得到一个什么样的结果

构造测试数据

员工实体类

/**
 * 员工实体类
 * @author Erwin Feng
 * @since 2020/4/27 2:10
 */
public class Employee {

    /** 员工ID */
    private Integer id;

    /** 员工姓名 */
    private String name;

    /** 员工薪资 */
    private Double salary;
    
    /** 构造方法、getter and setter、toString */
}

测试数据列表

[
    {
        "id":1,
        "name":"Jacob",
        "salary":1000
    },
    {
        "id":2,
        "name":"Sophia",
        "salary":2000
    },
    {
        "id":3,
        "name":"Rose",
        "salary":3000
    },
    {
        "id":4,
        "name":"Lily",
        "salary":4000
    },
    {
        "id":5,
        "name":"Daisy",
        "salary":5000
    },
    {
        "id":6,
        "name":"Jane",
        "salary":5000
    },
    {
        "id":7,
        "name":"Jasmine",
        "salary":6000
    },
    {
        "id":8,
        "name":"Jack",
        "salary":6000
    },
    {
        "id":9,
        "name":"Poppy",
        "salary":7000
    }
]

Stream API Test

filter 过滤

需求:查找薪酬为5000的员工列表

List<Employee> employees = list.stream().filter(employee -> employee.getSalary() == 5000)
        .peek(System.out::println)
        .collect(Collectors.toList());
Assert.assertEquals(2, employees.size());

map 映射

需求:将薪酬大于5000的员工放到Leader对象中

List<Leader> leaders = list.stream().filter(employee -> employee.getSalary() > 5000).map(employee -> {
    Leader leader = new Leader();
    leader.setName(employee.getName());
    leader.setSalary(employee.getSalary());
    return leader;
}).peek(System.out::println).collect(Collectors.toList());
Assert.assertEquals(3, leaders.size());

flatMap 水平映射

需求:将多维的列表转化为单维的列表

说明:

我们将薪酬在1000-3000的分为一个列表,4000-5000分为一个列表,6000-7000分为一个列表。

将这三个列表组合在一起形成一个多维列表。

List<Employee> employees = multidimensionalList.stream().flatMap(Collection::stream).collect(Collectors.toList());
Assert.assertEquals(9, employees.size());

sorted 排序

需求:根据薪酬排序

// 薪酬从小到大排序
List<Employee> employees = list.stream().sorted(Comparator.comparing(Employee::getSalary)).peek(System.out::println).collect(Collectors.toList());

// 薪酬从大到小排序
List<Employee> employees2 = list.stream().sorted(Comparator.comparing(Employee::getSalary).reversed()).peek(System.out::println).collect(Collectors.toList());

min 最小值

double minValue = list.stream().mapToDouble(Employee::getSalary).min().orElse(0);
Assert.assertEquals(1000, minValue, 0.0);

Employee employee = list.stream().min(Comparator.comparing(Employee::getSalary)).orElse(null);
assert employee != null;
Assert.assertEquals(employee.getSalary(), minValue, 0.0);

max 最大值

double maxValue = list.stream().mapToDouble(Employee::getSalary).max().orElse(0);
Assert.assertEquals(7000, maxValue, 0.0);

average 平均值

double sum = list.stream().mapToDouble(Employee::getSalary).sum();
double averageValue = list.stream().mapToDouble(Employee::getSalary).average().orElse(0);
Assert.assertEquals(sum / list.size(), averageValue, 0.0);

match 匹配

// allMatch 集合中的元素都要满足条件才会返回true
// 薪酬都是大于等于1000的
boolean isAllMatch = list.stream().allMatch(employee -> employee.getSalary() >= 1000);
Assert.assertTrue(isAllMatch);

// anyMatch 集合中只要有一个元素满足条件就会返回true
// 有没有薪酬大于等于7000
boolean isAnyMatch = list.stream().anyMatch(employee -> employee.getSalary() >= 7000);
Assert.assertTrue(isAnyMatch);

// noneMatch 集合中没有元素满足条件才会返回true
// 没有薪酬小于1000的
boolean isNoneMatch = list.stream().noneMatch(employee -> employee.getSalary() < 1000);
Assert.assertTrue(isNoneMatch);

distinct 去重

默认的 distinct() 不接收参数,是根据 Object#equals(Object) 去重。根据API介绍,这是一个有中间状态的操作。

List<Employee> employees = list.stream().distinct().collect(Collectors.toList());
Assert.assertEquals(9, employees.size());

如果我们要根据对象中的某个属性去重的,可以使用 StreamEx

// 使用StreamEx去重
List<Employee> employees2 = StreamEx.of(list).distinct(Employee::getSalary).collect(Collectors.toList());
Assert.assertEquals(7, employees2.size());

当然也可以使用JDK Stream API

private static <T>Predicate<T> distinctByKey(Function<? super T, ?> keyExtractor) {
    Map<Object, Boolean> result = new ConcurrentHashMap<>();
    return t -> result.putIfAbsent(keyExtractor.apply(t), Boolean.TRUE) == null;
}

List<Employee> employees3 = list.stream().filter(distinctByKey(Employee::getSalary)).collect(Collectors.toList());
Assert.assertEquals(7, employees3.size());

reduce 裁减

需求:计算薪酬总和

// 先将员工列表转换为薪酬列表
// 再计算薪酬总和
double salarySum = list.stream().map(Employee::getSalary).reduce(Double::sum).orElse(0.0);
double sum = list.stream().mapToDouble(Employee::getSalary).sum();
Assert.assertEquals(salarySum, sum, 0.0);

另外,我们也可以设定一个累加函数的标识值

double salarySum5 = list.stream().map(Employee::getSalary).reduce(1.00, Double::sum);
Assert.assertEquals(salarySum5, sum + 1, 0.0);

collector 流的终止结果

// joining 拼接字符串
String employeeNames = list.stream().map(Employee::getName).collect(Collectors.joining(", "));
System.out.println(employeeNames); // Jacob, Sophia, Rose, Lily, Daisy, Jane, Jasmine, Jack, Poppy

// 返回一个List
List<String> employeeNameList = list.stream().map(Employee::getName).collect(Collectors.toList());
System.out.println(employeeNameList);

// 返回一个Set
Set<String> employeeNameSet = list.stream().map(Employee::getName).collect(Collectors.toSet());
System.out.println(employeeNameSet);

// 返回一个Vector
Vector<String> employeeNameVector = list.stream().map(Employee::getName).collect(Collectors.toCollection(Vector::new));
System.out.println(employeeNameVector);

// 返回一个Map
Map<Integer, String> employeesMap = list.stream().collect(Collectors.toMap(Employee::getId, Employee::getName));
System.out.println(employeesMap);

count 统计

需求:薪酬为5000的员工数

不使用流

int count2 = 0;
for (Employee employee : list) {
    if (employee.getSalary() == 5000) {
        count2++;
    }
}
System.out.println(count2);

使用流

long count3 = list.stream().filter(employee -> employee.getSalary() == 5000).count();
Assert.assertEquals(count3, count2);

summarizingDouble 统计分析

DoubleSummaryStatistics employeeSalaryStatistics = list.stream().collect(Collectors.summarizingDouble(Employee::getSalary));
System.out.println("employee salary statistics:" + employeeSalaryStatistics);

DoubleSummaryStatistics employeeSalaryStatistics2 = list.stream().mapToDouble(Employee::getSalary).summaryStatistics();
System.out.println("employee salary statistics2:" + employeeSalaryStatistics2);

{count=9, sum=39000.000000, min=1000.000000, average=4333.333333, max=7000.000000}

partitioningBy 分区

分成满足条件(true)和不满足条件(false)两个区

需求:找出薪酬大于5000的员工

Map<Boolean, List<Employee>> map = list.stream().collect(Collectors.partitioningBy(employee -> employee.getSalary() > 5000));
System.out.println("true:" + map.get(Boolean.TRUE));
System.out.println("false:" + map.get(Boolean.FALSE));

true:[Employee{id=7, name='Jasmine', salary=6000.0}, Employee{id=8, name='Jack', salary=6000.0}, Employee{id=9, name='Poppy', salary=7000.0}]

false:[Employee{id=1, name='Jacob', salary=1000.0}, Employee{id=2, name='Sophia', salary=2000.0}, Employee{id=3, name='Rose', salary=3000.0}, Employee{id=4, name='Lily', salary=4000.0}, Employee{id=5, name='Daisy', salary=5000.0}, Employee{id=6, name='Jane', salary=5000.0}]

groupingBy 分组

需求:根据员工薪酬分组

Map<Double, List<Employee>> map = list.stream().collect(Collectors.groupingBy(Employee::getSalary));
System.out.println(map);

再举一个例子:薪酬 一> 总和(薪酬*员工数)

Map<Double, Double> map3 = list.stream().collect(Collectors.groupingBy(Employee::getSalary, Collectors.summingDouble(Employee::getSalary)));
System.out.println(map3);

parallel 平行计算

简单的说,就是启动多个线程计算

private static void cal(Employee employee) {
    try {
        long sleepTime = employee.getSalary().longValue();
        TimeUnit.MILLISECONDS.sleep(sleepTime);
        logger.info("employee name: {}", employee.getName());
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
}

list.stream().parallel().forEach(StreamTest::cal);
2020-05-15 01:47:14.231 [ForkJoinPool.commonPool-worker-4] INFO  com.fengwenyi.study_stream.StreamTest - employee name: Jacob
2020-05-15 01:47:15.226 [ForkJoinPool.commonPool-worker-2] INFO  com.fengwenyi.study_stream.StreamTest - employee name: Sophia
2020-05-15 01:47:16.226 [ForkJoinPool.commonPool-worker-1] INFO  com.fengwenyi.study_stream.StreamTest - employee name: Rose
2020-05-15 01:47:17.226 [ForkJoinPool.commonPool-worker-3] INFO  com.fengwenyi.study_stream.StreamTest - employee name: Lily
2020-05-15 01:47:18.225 [main] INFO  com.fengwenyi.study_stream.StreamTest - employee name: Jane
2020-05-15 01:47:18.228 [ForkJoinPool.commonPool-worker-7] INFO  com.fengwenyi.study_stream.StreamTest - employee name: Daisy
2020-05-15 01:47:19.226 [ForkJoinPool.commonPool-worker-5] INFO  com.fengwenyi.study_stream.StreamTest - employee name: Jack
2020-05-15 01:47:19.228 [ForkJoinPool.commonPool-worker-6] INFO  com.fengwenyi.study_stream.StreamTest - employee name: Jasmine
2020-05-15 01:47:21.234 [ForkJoinPool.commonPool-worker-4] INFO  com.fengwenyi.study_stream.StreamTest - employee name: Poppy

file 文件操作

try (PrintWriter printWriter = new PrintWriter(Files.newBufferedWriter(Paths.get(tempFilePath)))) { // 使用 try 自动关闭流
    list.forEach(printWriter::println);
    list.forEach(employee -> printWriter.println(employee.getName())); // 将员工的姓名写到文件中
}

// 从文件中读取员工的姓名
List<String> s = Files.lines(Paths.get(tempFilePath)).peek(System.out::println).collect(Collectors.toList());

测试代码

Study Java 8 Stream API

StreamTest Method List

学习链接

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342