(四)序列标注——实体识别BERT-BLSTM-CRF(下)

        前面说的是ner的经典算法以及今年的一些比较好的工作,最近bert模型刷新了NLP的绝大部分任务,可谓是一夜之间火爆了整个NLP界,这里我简单记录下bert在NER上的使用,至于原理部分我后续的博客会做详细的说明。这里先暂时理解成bert同样也是产生embedding的工具就可以,只不过这个embedding比Word2vec的embedding要厉害。

        ok 我们先设定下框架。

        框架很简单,就是bert+Bilstm-CRF,前面讲了bert就是用来产生词向量的,所以如果抛开这个原理,这个升级版本的NER模型就很简单了。

这里先给出代码链接。BERT是Google提出的基于tensorflow1.11.0的代码,里面用了高级API,所以这篇博客我主要在代码层面讲一下bert的应用。原理部分我也做了详细的介绍,请戳

bert的官方版本tensorflowpytorch版本

bert官方版本的代码写的非常好(虽然很难懂哈),这里借NER这个应用简单学习下:

1.数据准备

这里还是以中文数据为例,数据的格式还是和之前一样:

我们最终需要把数据转换成bert论文中的形式:

代码中的数据就是转成这样,这部分是纯工程问题,就不详细介绍    :

接下来就讲一下这个高级API的用法:

1.代码中将所有数据封装成record的形式:

注意这里是对每一组数据进行逐条封装

2.读取record 数据,组成batch

这里主要也是通过回调函数完成

input_file就是保存的record文件,然后用d = tf.data.TFRecordDataset(input_file)读数据,这样就得到了一个batch的数据。

然后定义estimator封装器

有了这个封装器训练、验证测试都比较方便(难得读懂哟),这里的model_fn就是模型定义的的回调函数。

3.定义模型

        大致思路:这个model_fn_builder是为了构造代码中默认调用的model_fn函数服务的,为了使用其他的参数,只不过model_fn函数的默认参数只有features, labels, mode, params,这四个,所以在model_fn包裹了一层model_fn_builder


注意这个init_checkpoint就是下载的模型,接下来我们看一下模型的构造即model_fn函数,以及他是如何使用init_checkpoint:

    - 在这个回调函数中,第一步就是创建模型,这一步其实和之前的tensorflow的写法思路一样,都是在完成“图”这个部分,

那么creat_model里有啥呢,不看也知道,第一步就是拿到bert的输出了,也就是embedding = model.get_sequence_output(),后面就是在创造blstm_crf这块就不再讲了,到这儿是不是完了呢,显然不是,因为我们只是把图建完了,bert的预训练的参数还没有喂给模型呢,接下来就是create_model后面一部分,加载模型预训练参数:

首先读取在create_model中的所有需要训练的参数,因为init_checkpoint中的参数对应的是bert的,所以要把训练参数分开,只能初始化bert的部分,同时bert论文中也提到了fine-tune,是不是这样,我们把参数打印出来看看就知道了:


bert模型的部分参数
lstm-crf模型参数

assignment_map是一个字典,里面存的就是需要create_model中需要初始化的变量,也就是bert的部分,然后调用tf.train.init_from_checkpoint(init_checkpoint, assignment_map)来加载模型,看看恢复出来的参数:

最后就是优化器的定义了:

实验结果:红框是总的实验精度,黄框是每个类别的结果

梳理完了代码,现在来总结下这个estimator API是怎么用的(看一堆基础教程,真不如看大牛写的代码来的快哈!)

1.首先把数据存成record

2.创建estimator 对象,对象里要传入创建model的回调函数model_fn

        model_fn的用法:

            - 参数model_fn(features, labels, mode, params) 这个是固定的,如果需要额外参数就在外面在包一层回调函数

                    - features就是record解析后的结果

            - 调用数据并送入创建的模型

3.创建优化器并使用tf.contrib.tpu.TPUEstimatorSpec封装优化器和loss

4.创建读取record并生成batch的回调函数

   5.训练模型

上述仅仅只是一个代码的分析,详细使用请看我的github吧!!!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容