Privacy in the Internet of Things for Smart Healthcare
本文主要在提供一的新的設定密碼方法(雖然名稱掛著healthcare但其實它只是拿healthcare當作一個應用場域掛上個關係罷了)
挪掉healthcare字樣,直接說是在講解一個設定密碼的方式會更符合這篇文章的主旨。
不過對於這篇文章裡頭,個人比較有興趣的地方在最末的一小部分:Traffic Analysis on Encrypted Channels Based on Machine Learning
這邊講的是雖然SSH加密通道,但仍可透過流量來作行為分析,去識別網站或用戶正在使用的服務。(但我不知道識別這個行為可以做什麼,只好先相信他很優秀?)
廢話不多說,這篇使用的是開源軟件Pacumen(不是Pockemon),主要由以下5塊module組成:
但是以下這段就有點黑人問號了
Here we attempt to see if the tested. pcap file contains behavior of surfing Facebook using Chrome. It shows that one of the two Facebook files is recognized with 99.7656 percent confidence and the other file only with 43.9545 percent confidence. On the other hand, some files without such behavior bring high confidence. This may be because the test data we prepared contains too much impurity, and the feature of those behaviors with high confidence may be similar to surfing Facebook in Chrome.
由於這結論來的太突然(而且整篇都在講如何建立優良的密碼,這存在很突兀...),我們一起看看Pacumen在做什麼好了。
從Black Hat|Homepage我找到了這篇
雖然他的出發點是基於以下:
Enterprises might proscribe service providers that either allow policy violations or cause a competitive disadvantage. Campus networks could desire to prevent games from clogging up the available bandwidth. From the point of view of a network provider, better classification and understanding of traffic could allow better traffic shaping.
但我對於粗體字的部分保有存疑就是,不過單純一點的想著如果能夠瞭解traffic的樣貌時,在QoS上面可能會有改善的plan或空間。
對,說服自己吧,一切都是為了QoS。
今天是第一天,所以就簡單的到這裡,明天來試試看Pacumen怎麼用好了。