(310)排序-二叉排序树

概述

  二叉排序树又称“二叉查找树”、“二叉搜索树”。二叉排序树:或者是一棵空树,或者是具有下列性质的二叉树:

  1. 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
  2. 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
  3. 它的左、右子树也分别为二叉排序树。

理论参考

http://www.cnblogs.com/zhuyf87/archive/2012/11/09/2763113.html
http://blog.chinaunix.net/uid-22663647-id-1771796.html
http://blog.csdn.net/hackbuteer1/article/details/6583988

代码(PHP)

1.二叉树类

在这个类中完成基本二叉树定义,包括定义属性(当前节点值,左子树,右子树)和一些基本方法(先序遍历,中序遍历,后序遍历)。

//定义一个二叉树
class BTree{
    protected $key   = null;//当前节点值
    protected $left  = null;//左子树
    protected $right = null;//右子树

    //构造函数
    public function __construct($i_key=null,$i_left=null,$i_right=null){
        $this->key = $i_key;
        $this->left = $i_left;
        $this->right = $i_right;
    }
    //析构函数
    public function __destruct(){
        $this->key = null;
        $this->left = null;
        $this->right = null;
    }

    //先序遍历,非递归实现
    public function preOrderTraversal(){
        $arr = array();
        $stack=array();
        $temp_tree = $this;
        while($temp_tree != null){
            $arr[] = $temp_tree->key;
            array_push($stack,$temp_tree);
            $temp_tree = $temp_tree->left;
        }
        while(!empty($stack)){
            $temp_tree = array_pop($stack);
            $temp_tree = $temp_tree->right;
            while($temp_tree != null){
                $arr[] = $temp_tree->key;
                array_push($stack,$temp_tree);
                $temp_tree = $temp_tree->left;
            }
        }
        return $arr;
    }

    //中序遍历,非递归实现
    public function inOrderTraversal(){
        $arr= array();  //存放遍历结果
        $stack = array();//存放节点栈
        $temp_tree =$this;
        while($temp_tree != null || !empty($stack)){
            while($temp_tree != null){
                array_push($stack,$temp_tree);
                $temp_tree = $temp_tree->left;
            }
            if(!empty($stack)){
                $temp_tree = array_pop($stack);
                $arr[]=$temp_tree->key;
                $temp_tree = $temp_tree->right;
            }
        }
        return $arr;
    }

    //后续遍历,非递归实现
    public function postOrderTraversal(){
        $arr= array();  //存放遍历结果
        $stack = array();//存放节点栈
        $temp_tree =$this;
        $previsit =null;
        while($temp_tree != null || !empty($stack)){
            while($temp_tree !=null){
                array_push($stack,$temp_tree);
                $temp_tree =$temp_tree->left;
            }

            $temp_tree = array_pop($stack);
            if($temp_tree->right == null || $temp_tree->right == $previsit){
                $arr[] = $temp_tree->key;
                $previsit = $temp_tree;
                $temp_tree = null;
            }else{
                array_push($stack,$temp_tree);
                $temp_tree = $temp_tree->right;
            }
        }
        return $arr;
    }
}

2.二叉排序树类

该类继承与二叉树类(BTree),完成二叉排序树的插入节点,查找节点,删除节点。

//定义二叉排序树
class BinarySortTree extends BTree{
    //插入一个节点到当前树中
    public function insertNode($key){
        if($this->key == null){//如果是空树,插入到首节点。
            $this->key = $key;
            return;
        }
        $temp_tree =$this;//当前子树
        while($temp_tree !=null){
            if($temp_tree->key == $key){
                break;
            }
            if($temp_tree->key > $key){//左子树
                if($temp_tree->left == null){
                    $temp_tree->left = new BinarySortTree($key);
                    break;
                }else{
                    $temp_tree = $temp_tree->left;
                }
            }
            if($temp_tree->key < $key){//右子树插入
                if($temp_tree->right == null){
                    $temp_tree->right = new BinarySortTree($key);
                    break;
                }else{
                    $temp_tree = $temp_tree->right;
                }
            }
        }
    }

    //查找一个节点,找到返回该节点及其子树,否则返回null
    public function searchNode($key){
        $temp_tree =$this;//当前子树
        while($temp_tree !=null){
            if($temp_tree->key == $key){
                break;
            }
            if($temp_tree->key > $key){//左子树
                if($temp_tree->left == null){
                    $temp_tree = null;
                    break;
                }else{
                    $temp_tree = $temp_tree->left;
                }
            }
            if($temp_tree->key < $key){//右子树插入
                if($temp_tree->right == null){
                    $temp_tree=null;
                    break;
                }else{
                    $temp_tree = $temp_tree->right;
                }
            }
        }
        return $temp_tree;
    }

    //删除一个节点
    public function deleteNode($key){
        $parent_tree =null;//要删除节点的父节点树
        $temp_tree = $this;//要删除的节点
        $in_side = 0;       //要删除的节点在父节点树的哪边

        //找到要删除的节点极其父节点
        while($temp_tree !=null && ($temp_tree->key != $key)){
            if($temp_tree->key > $key){//左子树
                if($temp_tree->left == null){
                    $temp_tree = null;
                    break;
                }else{
                    $in_side =0;
                    $parent_tree = $temp_tree;
                    $temp_tree = $temp_tree->left;
                }
            }else{//右子树
                if($temp_tree->right == null){
                    $temp_tree=null;
                    break;
                }else{
                    $in_side =1;
                    $parent_tree = $temp_tree;
                    $temp_tree = $temp_tree->right;
                }
            }
        }
        //根据不同情况进行删除操作
        if($temp_tree != null){//当前节点存在
            $p_side =null;
            //开始删除
            if($temp_tree->left == null){
                //如果要删除节点左边为空,就将右边赋给parent;
                $p_side = $temp_tree->right;
            }else if($temp_tree->right == null){
                //如果要删除节点右边边为空,就将左边赋给parent;
                $p_side = $temp_tree->left;
            }else{
                //都不为空,找到要删除节点左子树的最大的节点,极其该节点的父节点
                $lMax =$temp_tree->right;//左子树最大节点
                $p_lMax = $temp_tree;
                while($lMax->right != null){
                    if($lMax->right->right == null){
                        $p_lMax = $lMax;
                    }
                    $lMax = $lMax->right;
                }
                $p_lMax->right = $lMax->left;
                $lMax->left = $temp_tree->left;
                $lMax->right = $temp_tree->right;
                $p_side = $lMax;
            }
            //设置父节点
            if($parent_tree != null){//不是根节点删除
                //引用当前父节点的某一边。
                if($in_side == 0){
                    $parent_tree->left  = $p_side;
                }else{
                    $parent_tree->right = $p_side;
                }
            }else{
                $this->key = $p_side->key;
                $this->left = $p_side->left;
                $this->right = $p_side->right;
            }
        }
    }
}

3.调用

$item = array(50, 30, 20,35,33,40,36, 100, 56, 78);
$root = new BinarySortTree();
foreach($item as $key){
    $root->insertNode($key);
}
var_dump($root);
echo '先序遍历:'.implode(',',$root->preOrderTraversal()).'<br>';
echo '中序遍历:'.implode(',',$root->inOrderTraversal()).'<br>';
echo '后序遍历:'.implode(',',$root->postOrderTraversal()).'<br>';

$root->deleteNode('30');
echo '删除节点后的先序遍历:'.implode(',',$root->preOrderTraversal()).'<br>';

结果

二叉排序树PHP
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 树的概述 树是一种非常常用的数据结构,树与前面介绍的线性表,栈,队列等线性结构不同,树是一种非线性结构 1.树的定...
    Jack921阅读 4,480评论 1 31
  • 四、树与二叉树 1. 二叉树的顺序存储结构 二叉树的顺序存储就是用数组存储二叉树。二叉树的每个结点在顺序存储中都有...
    MinoyJet阅读 1,576评论 0 7
  • B树的定义 一棵m阶的B树满足下列条件: 树中每个结点至多有m个孩子。 除根结点和叶子结点外,其它每个结点至少有m...
    文档随手记阅读 13,304评论 0 25
  • 二叉树 满二叉树 国内教程定义:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,...
    简_爱SimpleLove阅读 4,296评论 0 3
  • 姓名: 李小娜 [嵌牛导读] :这篇文章主要介绍了Java二叉排序树,包括二叉排序树的定义、二叉排序树的性质、二叉...
    n184阅读 641评论 0 0