Spark算子——转换操作

概述

每一次转换操作都会产生不同的RDD,供给下一个操作使用。

算子

解决问题其实是将问题的初始化状态,通过一系列的操作Operate对问题的状态进行转换,然后达到完成解决的状态

惰性机制

RDD的转换过程是惰性求值的,也就是,整个转换过程只记录轨迹,并不会发生真正的计算,只有遇到了行动操作时,才会触发真正的计算。

filter(func)

过滤出满足函数func的元素,并返回存入一个新的数据集

    val conf = new SparkConf().setAppName("spark").setMaster("local")
    val sc = new SparkContext(conf)
    val rdd = sc.parallelize(List(1,2,3,4,5,6))
    val result = rdd.filter(_%2==0)
    println(result.collect().mkString(","))

map(func)

将每个元素传递到函数func中进行操作,并将结果返回为一个新的数据集。
collect()以数组的形式返回rdd的结果,但列表中每个数乘以2

    val conf = new SparkConf().setAppName("spark").setMaster("local")
    val sc = new SparkContext(conf)
    val rdd = sc.parallelize(List(1,2,3,4,5,6))
    val mapResult = rdd.map(_*2)
    println(mapResult.collect().toBuffer)

flatMap(func)

与map相似,但是每个输入元素都可以映射到0或多个输出结果,所以func应该返回一个序列,而不是单一元素

    val conf = new SparkConf().setAppName("RDD").setMaster("local[*]")
    val sc = new SparkContext(conf)
    val arrayRDD: RDD[List[Int]] = sc.makeRDD(Array(List(1,2),List(3,4)))
    val listRDD: RDD[Int] = arrayRDD.flatMap(data=>data)
    listRDD.collect().foreach(println)
    val conf = new SparkConf().setAppName("spark").setMaster("local")
    val sc = new SparkContext(conf)
    val rdd = sc.parallelize(Array("a b c","b c d"))
    val result = rdd.flatMap(_.split(" "))
    println(result.collect().mkString(","))

sample

参数1 是否抽出的数据放回
参数2 抽样比例 浮点型
参数3 种子,默认值

    val conf = new SparkConf().setAppName("spark").setMaster("local")
    val sc = new SparkContext(conf)
    val rdd = sc.parallelize(1 to 10)
    val result = rdd.sample(false,0.5)
    println(result.collect().mkString(","))

union

求并集

    val conf = new SparkConf().setAppName("spark").setMaster("local")
    val sc = new SparkContext(conf)
    val rdd1 = sc.parallelize(List(1,3,4))
    val rdd2 = sc.parallelize(List(2,3,4))
    val result = rdd1.union(rdd2)
    println(result.collect().toBuffer)

intersection

求交集

    val conf = new SparkConf().setAppName("spark").setMaster("local")
    val sc = new SparkContext(conf)
    val rdd1 = sc.parallelize(List(1,3,4))
    val rdd2 = sc.parallelize(List(2,3,4))
    val result = rdd1.intersection(rdd2)
    println(result.collect().toBuffer)

distinct

去除重复元素

    val conf = new SparkConf().setAppName("spark").setMaster("local")
    val sc = new SparkContext(conf)
    val rdd = sc.parallelize(List(1,3,4,3,5,1))
    val result = rdd.distinct()
    println(result.collect().toBuffer)

groupByKey(func)

应用于(K,V)键值的数据集时,返回一个新的(K,Iterable)形式的数据集

reduceByKey(func)

应用于(K,V)键值对的数据集时,返回一个新的(K,V)形式的数据集,其中每个值是将每个Key传递到函数func中进行聚合后的结果。

scala> val list = List("Hadoop","Spark","Hive","Scala")
list: List[String] = List(Hadoop, Spark, Hive, Scala)

scala> val rdd = sc.parallelize(list)
rdd: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[36] at parallelize at <console>:26

scala> val mapRDD = rdd.map(word=>(word,1))
mapRDD: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[37] at map at <console>:25

scala> mapRDD.foreach(println)
(Hadoop,1)
(Spark,1)
(Hive,1)
(Scala,1)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 221,695评论 6 515
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,569评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,130评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,648评论 1 297
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,655评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,268评论 1 309
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,835评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,740评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,286评论 1 318
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,375评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,505评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,185评论 5 350
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,873评论 3 333
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,357评论 0 24
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,466评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,921评论 3 376
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,515评论 2 359